Suppr超能文献

建立并验证一个预测血液透析患者肌肉减少症的列线图模型。

Development and validation of a nomogram model for predicting low muscle mass in patients undergoing hemodialysis.

机构信息

Department of Blood Purification Centre, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.

Department of Science and Development, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

出版信息

Ren Fail. 2023 Dec;45(1):2231097. doi: 10.1080/0886022X.2023.2231097.

Abstract

BACKGROUND

Muscle mass is important in determining patients' nutritional status. However, measurement of muscle mass requires special equipment that is inconvenient for clinical use. We aimed to develop and validate a nomogram model for predicting low muscle mass in patients undergoing hemodialysis (HD).

METHODS

A total of 346 patients undergoing HD were enrolled and randomly divided into a 70% training set and a 30% validation set. The training set was used to develop the nomogram model, and the validation set was used to validate the developed model. The performance of the nomogram was assessed using the receiver operating characteristic (ROC) curve, a calibration curve, and the Hosmer-Lemeshow test. A decision curve analysis (DCA) was used to evaluate the clinical practicality of the nomogram model.

RESULTS

Age, sex, body mass index (BMI), handgrip strength (HGS), and gait speed (GS) were included in the nomogram for predicting low skeletal muscle mass index (LSMI). The diagnostic nomogram model exhibited good discrimination with an area under the ROC curve (AUC) of 0.906 (95% CI, 0.862-0.940) in the training set and 0.917 (95% CI, 0.846-0.962) in the validation set. The calibration analysis also showed excellent results. The nomogram demonstrated a high net benefit in the clinical decision curve for both sets.

CONCLUSIONS

The prediction model included age, sex, BMI, HGS, and GS, and it can successfully predict the presence of LSMI in patients undergoing HD. This nomogram provides an accurate visual tool for medical staff for prediction, early intervention, and graded management.

摘要

背景

肌肉量对于确定患者的营养状况很重要。然而,肌肉量的测量需要特殊的设备,在临床应用中并不方便。我们旨在开发和验证一个适用于接受血液透析(HD)患者的低肌肉量预测的列线图模型。

方法

共纳入 346 名接受 HD 的患者,并将其随机分为 70%的训练集和 30%的验证集。训练集用于开发列线图模型,验证集用于验证开发的模型。通过接收者操作特征(ROC)曲线、校准曲线和 Hosmer-Lemeshow 检验来评估列线图的性能。通过决策曲线分析(DCA)来评估列线图模型的临床实用性。

结果

年龄、性别、体重指数(BMI)、握力(HGS)和步速(GS)被纳入预测低骨骼肌指数(LSMI)的列线图中。诊断列线图模型在训练集和验证集中的 ROC 曲线下面积(AUC)分别为 0.906(95%置信区间,0.862-0.940)和 0.917(95%置信区间,0.846-0.962),具有良好的区分能力。校准分析也显示出了优异的结果。该列线图在两个数据集的临床决策曲线上均显示出较高的净收益。

结论

该预测模型包含年龄、性别、BMI、HGS 和 GS,可成功预测接受 HD 的患者中存在 LSMI 的情况。该列线图为医务人员提供了一种准确的可视化工具,用于预测、早期干预和分级管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7097/10324438/15b653eefe77/IRNF_A_2231097_F0001_B.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验