Goloboff Pablo A
Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York 14853-0999, U.S.A.
Cladistics. 1991 Sep;7(3):215-232. doi: 10.1111/j.1096-0031.1991.tb00035.x.
Cladistic data are more decisive when the possible trees differ more in tree length. When all the possible dichotomous trees have the same length, no one tree is better supported than the others, and the data are completely undecisive. From a rule for recursively generating undecisive matrices for different numbers of taxa, formulas to calculate consistency, rescaled consistency and retention indices in undecisive matrices are derived. The least decisive matrices are not the matrices with the lowest possible consistency, rescaled consistency or retention indices (on the most parsimonious trees); those statistics do not directly vary with decisiveness. Decisiveness can be measured with a newly proposed statistic, DD=S̄-S)/(S̄-S) (where S= length of the most parsimonious cladogram, S̄= mean length of all the possible cladograms for the data set and M= observed variation). For any data set, S̄ can be calculated exactly with simple formulas; it depends on the types of characters present, and not on their congruence. Despite some recent assertions to the contrary, the consistency index is an appropriate measure of homoplasy (= deviation from hierarchy). The retention index seems more appropriate for comparing the fit of different trees for the same data set.
当可能的系统树在树长上差异更大时,分支数据更具决定性。当所有可能的二叉树长度相同时,没有一棵系统树比其他树得到更好的支持,数据完全无法判定。从一个用于递归生成不同分类单元数量的不确定矩阵的规则出发,推导出了计算不确定矩阵中一致性、重新标度一致性和保留指数的公式。最不确定的矩阵不是在最简约系统树上具有最低可能一致性、重新标度一致性或保留指数的矩阵;这些统计量并不直接随决定性而变化。决定性可以用一个新提出的统计量DD = (S̄ - S)/(S̄ - S)来衡量(其中S = 最简约分支图的长度,S̄ = 数据集中所有可能分支图的平均长度,M = 观察到的变异)。对于任何数据集,S̄都可以用简单公式精确计算;它取决于所呈现的字符类型,而不取决于它们的一致性。尽管最近有相反的断言,但一致性指数是衡量同塑性(= 偏离层次结构)的合适指标。保留指数似乎更适合比较同一数据集不同系统树的拟合度。