CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria.
Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna 1030, Austria.
Bioinformatics. 2022 Mar 4;38(6):1692-1699. doi: 10.1093/bioinformatics/btab853.
High-content imaging screens provide a cost-effective and scalable way to assess cell states across diverse experimental conditions. The analysis of the acquired microscopy images involves assembling and curating raw cellular measurements into morphological profiles suitable for testing biological hypotheses. Despite being a critical step, general-purpose and adaptable tools for morphological profiling are lacking and no solution is available for the high-performance Julia programming language.
Here, we introduce BioProfiling.jl, an efficient end-to-end solution for compiling and filtering informative morphological profiles in Julia. The package contains all the necessary data structures to curate morphological measurements and helper functions to transform, normalize and visualize profiles. Robust statistical distances and permutation tests enable quantification of the significance of the observed changes despite the high fraction of outliers inherent to high-content screens. This package also simplifies visual artifact diagnostics, thus streamlining a bottleneck of morphological analyses. We showcase the features of the package by analyzing a chemical imaging screen, in which the morphological profiles prove to be informative about the compounds' mechanisms of action and can be conveniently integrated with the network localization of molecular targets.
The Julia package is available on GitHub: https://github.com/menchelab/BioProfiling.jl. We also provide Jupyter notebooks reproducing our analyses: https://github.com/menchelab/BioProfilingNotebooks. The data underlying this article are available from FigShare, at https://doi.org/10.6084/m9.figshare.14784678.v2.
Supplementary data are available at Bioinformatics online.
高内涵成像技术提供了一种经济高效且可扩展的方法,可用于评估各种实验条件下的细胞状态。获取的显微镜图像分析涉及将原始细胞测量值组合并整理为适合测试生物学假设的形态特征。尽管这是一个关键步骤,但缺乏通用且可适应的形态特征分析工具,并且没有适用于高性能 Julia 编程语言的解决方案。
在这里,我们介绍了 BioProfiling.jl,这是一个在 Julia 中用于编译和过滤信息丰富的形态特征的高效端到端解决方案。该软件包包含了整理形态学测量值所需的所有数据结构,以及用于转换、归一化和可视化特征的辅助函数。稳健的统计距离和置换检验使即使在高内涵筛选中固有的大量离群值的情况下,也能够量化观察到的变化的显著性。该软件包还简化了视觉伪影诊断,从而简化了形态分析的瓶颈。我们通过分析化学成像筛选来展示该软件包的功能,其中形态特征证明了化合物作用机制的信息性,并且可以方便地与分子靶标的网络定位集成。
Julia 软件包可在 GitHub 上获得:https://github.com/menchelab/BioProfiling.jl。我们还提供了重现我们分析的 Jupyter 笔记本:https://github.com/menchelab/BioProfilingNotebooks。本文所依据的数据可从 FigShare 获得,网址为 https://doi.org/10.6084/m9.figshare.14784678.v2。
补充数据可在 Bioinformatics 在线获得。