Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America.
Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America.
J Neural Eng. 2022 Jan 24;19(1). doi: 10.1088/1741-2552/ac4594.
. Successive improvements in high density surface electromyography and decomposition techniques have facilitated an increasing yield in decomposed motor unit (MU) spike times. Though these advancements enhance the generalizability of findings and promote the application of MU discharge characteristics to inform the neural control of motor output, limitations remain. Specifically, (1) common approaches for generating smooth estimates of MU discharge rates introduce artifacts in quantification, which may bias findings, and (2) discharge characteristics of large MU populations are often difficult to visualize.. In the present study, we propose support vector regression (SVR) as an improved approach for generating smooth continuous estimates of discharge rate and compare the fit characteristics of SVR to traditionally used methods, including Hanning window filtering and polynomial regression. Furthermore, we introduce ensembles as a method to visualize the discharge characteristics of large MU populations. We define ensembles as the average discharge profile of a subpopulation of MUs, composed of a time normalized ensemble average of all units within this subpopulation. Analysis was conducted with MUs decomposed from the tibialis anterior (= 2128), medial gastrocnemius (= 2673), and soleus (= 1190) during isometric plantarflexion and dorsiflexion contractions.. Compared to traditional approaches, we found SVR to alleviate commonly observed inaccuracies and produce significantly less absolute fit error in the initial phase of MU discharge and throughout the entire duration of discharge. Additionally, we found the visualization of MU populations as ensembles to intuitively represent population discharge characteristics with appropriate accuracy for visualization.. The results and methods outlined here provide an improved method for generating estimates of MU discharge rate with SVR and present a unique approach to visualizing MU populations with ensembles. In combination, the use of SVR and generation of ensembles represent an efficient method for rendering population discharge characteristics.
. 高密度表面肌电图和分解技术的不断改进,使得分解的运动单位 (MU) 尖峰时间的产量不断增加。尽管这些进展提高了研究结果的普遍性,并促进了 MU 放电特征在运动输出神经控制中的应用,但仍存在局限性。具体来说:(1) 生成 MU 放电率平滑估计的常用方法会在定量分析中引入伪影,从而可能会产生偏差;(2) 大 MU 群体的放电特征通常难以可视化。. 在本研究中,我们提出支持向量回归 (SVR) 作为生成 MU 放电率平滑连续估计的改进方法,并将 SVR 的拟合特征与传统方法(包括汉宁窗滤波和多项式回归)进行比较。此外,我们引入集合作为可视化大 MU 群体放电特征的方法。我们将集合定义为 MU 子集的放电平均轮廓,由该子集中所有单位的时间归一化集合平均组成。分析是在等长跖屈和背屈收缩时从胫骨前肌(=2128)、内侧腓肠肌(=2673)和比目鱼肌(=1190)分解的 MU 上进行的。. 与传统方法相比,我们发现 SVR 可以减轻常见的不准确现象,并在 MU 放电的初始阶段和整个放电过程中产生显著更少的绝对拟合误差。此外,我们发现将 MU 群体可视化作为集合,可以直观地表示群体放电特征,并且具有适当的可视化精度。. 这里概述的结果和方法提供了一种使用 SVR 生成 MU 放电率估计的改进方法,并提出了一种使用集合可视化 MU 群体的独特方法。总之,使用 SVR 和生成集合代表了一种高效的呈现群体放电特征的方法。