使用肉桂酸包覆的磁性氧化铁和介孔硅纳米粒子增强现有抗菌药物对选定的多重耐药菌的疗效。
Enhancing efficacy of existing antibacterials against selected multiple drug resistant bacteria using cinnamic acid-coated magnetic iron oxide and mesoporous silica nanoparticles.
机构信息
College of Arts and Sciences, American University of Sharjah, University City, Sharjah, UAE.
International Centre for Chemical and Biological Sciences, H.e.j. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan.
出版信息
Pathog Glob Health. 2022 Oct;116(7):438-454. doi: 10.1080/20477724.2021.2014235. Epub 2021 Dec 22.
Developing new antibacterial drugs by using traditional ways is insufficient to meet existing challenges; hence, new strategies in the field of antibacterial discovery are necessary. An alternative strategy is to improve the efficacy of currently available antibiotics. Herein, the antibacterial efficacy of drugs (Cefixime, Sulfamethoxazole, and Moxifloxacin) and drug-loaded cinnamic acid-coated magnetic iron oxide and mesoporous silica nanoparticles (NPs) was elucidated versus Gram-negative bacteria (, neuropathogenic K1 and ) and Gram-positive bacteria (Methicillin-resistant (MRSA), and ). NPs were synthesized by co-precipitation and the Stöber method, and characterized by Fourier transform-infrared spectroscopy, Zetasizer, and Atomic force microscopy. Lactate dehydrogenase (LDH) assays were accomplished to determine drug cytotoxicity against human cells. Spherical NPs in the range of 118-362 nm were successfully synthesized. Antibacterial assays revealed that drugs conjugated with NPs portray enhanced bactericidal efficacies against multiple drug resistant bacteria compared to the drugs alone. Of note, Cefixime-conjugated NPs against K1 and Methicillin- resistant , resulted in the complete eradication of all bacterial isolates tested at significantly lower concentrations compared to the antibiotics alone. Likewise, conjugation of Moxifloxacin resulted in the complete elimination of K1 and MRSA. Of note, nano-formulated drugs presented negligible cytotoxicity against human cells. These results depict potent, and enhanced efficacy of nano-formulated drugs against medically important bacteria and can be used as alternatives to current antibiotics. Future studies and clinical studies are warranted in prospective years to realize these expectations.
利用传统方法开发新的抗菌药物不足以应对现有挑战;因此,需要在抗菌药物发现领域采取新的策略。另一种策略是提高现有抗生素的疗效。本文研究了药物(头孢克肟、磺胺甲恶唑和莫西沙星)和载药肉桂酸包覆磁性氧化铁和介孔硅纳米粒子(NPs)对革兰氏阴性菌(神经致病性 K1 和 )和革兰氏阳性菌(耐甲氧西林金黄色葡萄球菌(MRSA)、 和 )的抗菌效果。NPs 通过共沉淀和 Stöber 法合成,并通过傅里叶变换红外光谱、Zetasizer 和原子力显微镜进行了表征。通过乳酸脱氢酶(LDH)测定来确定药物对人细胞的细胞毒性。成功合成了 118-362nm 的球形 NPs。抗菌实验表明,与单独使用药物相比,与 NPs 结合的药物对多重耐药菌表现出更强的杀菌效果。值得注意的是,头孢克肟偶联 NPs 对 K1 和耐甲氧西林金黄色葡萄球菌,在显著降低抗生素单独使用浓度的情况下,完全消除了所有测试的细菌分离株。同样,莫西沙星的偶联导致 K1 和 MRSA 的完全消除。值得注意的是,纳米药物对人细胞的细胞毒性可忽略不计。这些结果表明,纳米药物对重要的医用细菌具有强大且增强的疗效,可以作为现有抗生素的替代品。未来需要在未来几年进行更多的研究和临床研究,以实现这些期望。
相似文献
Antibiotics (Basel). 2022-5-20
Antibiotics (Basel). 2021-8-11
Antibiotics (Basel). 2018-11-15
Antibiotics (Basel). 2023-4-14
引用本文的文献
Antibiotics (Basel). 2023-4-14
Antibiotics (Basel). 2022-5-20
Materials (Basel). 2022-3-24
本文引用的文献
Saudi J Biol Sci. 2021-8
ACS Omega. 2021-4-26
Pharm Dev Technol. 2021-3
Biomater Investig Dent. 2020-7-23
Antibiotics (Basel). 2019-12-11