Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt.
Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of Chinagrid.4422.0, Qingdao, People's Republic of China.
Microbiol Spectr. 2022 Aug 31;10(4):e0025022. doi: 10.1128/spectrum.00250-22. Epub 2022 Jul 19.
Surface-growing antibiotic-resistant pathogenic bacteria such as Escherichia coli and Staphylococcus aureus are emerging as a global health challenge due to dilemmas in clinical treatment. Furthermore, their pathogenesis, including increasingly serious antimicrobial resistance and biofilm formation, makes them challenging to treat by conventional therapy. Therefore, the development of novel antivirulence strategies will undoubtedly provide a path forward in combatting these resistant bacterial infections. In this regard, we developed novel biosurfactant-coated nanoparticles to combine the antiadhesive/antibiofilm properties of rhamnolipid (RHL)-coated FeO nanoparticles (NPs) with each of the -coumaric acid (-CoA) and gallic acid (GA) antimicrobial drugs by using the most available polymer common coatings (PVA) to expand the range of effective antibacterial drugs, as well as a mechanism for their synergistic effect via a simple method of preparation. Mechanistically, the average size of bare FeO NPs was ~15 nm, while RHL-coated FeO@PVA@-CoA/GA was about ~254 nm, with a drop in zeta potential from -18.7 mV to -34.3 mV, which helped increase stability. Our data show that RHL-FeO@PVA@-CoA/GA biosurfactant NPs can remarkably interfere with bacterial growth and significantly inhibited biofilm formation to more than 50% via downregulating and operons, which are responsible for slime layer formation and curli fimbriae production in S. aureus and E. coli, respectively. The novelty regarding the activity of RHL-FeO@PVA@-CoA/GA biosurfactant NPs reveals their potential effect as an alternative multitarget antivirulence candidate to minimize infection severity by inhibiting biofilm development. Therefore, they could be used in antibacterial coatings and wound dressings in the future. Antimicrobial resistance poses a great threat and challenge to humanity. Therefore, the search for alternative ways to target and eliminate microbes from plant, animal, and marine microorganisms is one of the world's concerns today. Furthermore, the extraordinary capacity of S. aureus and E. coli to resist standard antibacterial drugs is the dilemma of all currently used remedies. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have become widespread, leading to no remedies being able to treat these threatening pathogens. The most widely recognized serotypes that cause severe foodborne illness are E. coli O157:H7, O26:H11, and O78:H10, and they display increasing antimicrobial resistance rates. Therefore, there is an urgent need for an effective therapy that has dual action to inhibit biofilm formation and decrease bacterial growth. In this study, the synthesized RHL-FeO@PVA@-CoA/GA biosurfactant NPs have interesting properties, making them excellent candidates for targeted drug delivery by inhibiting bacterial growth and downregulating biofilm-associated and gene loci.
表面生长的抗生素耐药病原菌,如大肠杆菌和金黄色葡萄球菌,由于临床治疗中的困境,正在成为全球健康挑战。此外,它们的发病机制,包括越来越严重的抗微生物耐药性和生物膜形成,使得它们难以通过传统疗法进行治疗。因此,开发新型的抗病毒策略无疑将为对抗这些耐药细菌感染提供一条途径。在这方面,我们开发了新型的生物表面活性剂涂层纳米粒子,通过使用最常用的聚合物共涂层 (PVA) 将鼠李糖脂 (RHL) 涂层的 FeO 纳米粒子 (NPs) 与 - 香豆酸 (-CoA) 和没食子酸 (GA) 抗菌药物的抗粘附/抗生物膜特性结合起来,从而扩大有效抗菌药物的范围,并通过简单的制备方法实现协同作用的机制。从机制上讲,裸 FeO NPs 的平均粒径约为 15nm,而 RHL 涂层的 FeO@PVA@-CoA/GA 约为 254nm,zeta 电位从-18.7mV 下降到-34.3mV,这有助于提高稳定性。我们的数据表明,RHL-FeO@PVA@-CoA/GA 生物表面活性剂 NPs 可以显著干扰细菌生长,并通过下调 和 操纵子,显著抑制生物膜形成超过 50%,这分别负责金黄色葡萄球菌和大肠杆菌中粘液层形成和卷曲菌毛的产生。RHL-FeO@PVA@-CoA/GA 生物表面活性剂 NPs 的活性方面的新颖性揭示了它们作为一种替代多靶抗病毒候选物的潜在效果,可通过抑制生物膜的发展来最大限度地减少感染的严重程度。因此,它们未来可用于抗菌涂层和伤口敷料。抗生素耐药性对人类构成巨大威胁和挑战。因此,寻找替代方法来靶向和消除植物、动物和海洋微生物中的微生物是当今世界关注的问题之一。此外,金黄色葡萄球菌和大肠杆菌对标准抗菌药物的非凡耐药能力是目前所有治疗方法的困境。耐甲氧西林金黄色葡萄球菌 (MRSA) 和万古霉素耐药金黄色葡萄球菌 (VRSA) 已广泛传播,导致没有治疗方法能够治疗这些威胁性病原体。引起严重食源性疾病的最广泛认可的血清型是大肠杆菌 O157:H7、O26:H11 和 O78:H10,它们显示出越来越高的抗药性率。因此,迫切需要一种具有双重作用的有效疗法,既能抑制生物膜形成,又能抑制细菌生长。在这项研究中,合成的 RHL-FeO@PVA@-CoA/GA 生物表面活性剂 NPs 具有有趣的特性,使其成为通过抑制细菌生长和下调与生物膜相关的 和 基因座来进行靶向药物递送的优秀候选物。
Ann Clin Microbiol Antimicrob. 2021-8-21
Int J Nanomedicine. 2020-7-7
World J Microbiol Biotechnol. 2025-5-6
Front Cell Infect Microbiol. 2025-1-24
Front Microbiol. 2025-1-9
Front Pharmacol. 2024-11-20
Antibiotics (Basel). 2024-9-27
Front Microbiol. 2024-5-22
Pharmaceutics. 2023-8-18
Probiotics Antimicrob Proteins. 2024-6
Curr Res Microb Sci. 2021-12-29
Dalton Trans. 2020-6-29
J Pharm Anal. 2016-4
Appl Microbiol Biotechnol. 2018-1-11