文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

杆菌脂-氧化铁纳米颗粒作为一种新型的多靶点候选物,可对抗主要食源性病原体大肠杆菌血清型和耐甲氧西林金黄色葡萄球菌。

Rhamnolipid-Coated Iron Oxide Nanoparticles as a Novel Multitarget Candidate against Major Foodborne E. coli Serotypes and Methicillin-Resistant S. aureus.

机构信息

Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt.

Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of Chinagrid.4422.0, Qingdao, People's Republic of China.

出版信息

Microbiol Spectr. 2022 Aug 31;10(4):e0025022. doi: 10.1128/spectrum.00250-22. Epub 2022 Jul 19.


DOI:10.1128/spectrum.00250-22
PMID:35852338
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9430161/
Abstract

Surface-growing antibiotic-resistant pathogenic bacteria such as Escherichia coli and Staphylococcus aureus are emerging as a global health challenge due to dilemmas in clinical treatment. Furthermore, their pathogenesis, including increasingly serious antimicrobial resistance and biofilm formation, makes them challenging to treat by conventional therapy. Therefore, the development of novel antivirulence strategies will undoubtedly provide a path forward in combatting these resistant bacterial infections. In this regard, we developed novel biosurfactant-coated nanoparticles to combine the antiadhesive/antibiofilm properties of rhamnolipid (RHL)-coated FeO nanoparticles (NPs) with each of the -coumaric acid (-CoA) and gallic acid (GA) antimicrobial drugs by using the most available polymer common coatings (PVA) to expand the range of effective antibacterial drugs, as well as a mechanism for their synergistic effect via a simple method of preparation. Mechanistically, the average size of bare FeO NPs was ~15 nm, while RHL-coated FeO@PVA@-CoA/GA was about ~254 nm, with a drop in zeta potential from -18.7 mV to -34.3 mV, which helped increase stability. Our data show that RHL-FeO@PVA@-CoA/GA biosurfactant NPs can remarkably interfere with bacterial growth and significantly inhibited biofilm formation to more than 50% via downregulating and operons, which are responsible for slime layer formation and curli fimbriae production in S. aureus and E. coli, respectively. The novelty regarding the activity of RHL-FeO@PVA@-CoA/GA biosurfactant NPs reveals their potential effect as an alternative multitarget antivirulence candidate to minimize infection severity by inhibiting biofilm development. Therefore, they could be used in antibacterial coatings and wound dressings in the future. Antimicrobial resistance poses a great threat and challenge to humanity. Therefore, the search for alternative ways to target and eliminate microbes from plant, animal, and marine microorganisms is one of the world's concerns today. Furthermore, the extraordinary capacity of S. aureus and E. coli to resist standard antibacterial drugs is the dilemma of all currently used remedies. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have become widespread, leading to no remedies being able to treat these threatening pathogens. The most widely recognized serotypes that cause severe foodborne illness are E. coli O157:H7, O26:H11, and O78:H10, and they display increasing antimicrobial resistance rates. Therefore, there is an urgent need for an effective therapy that has dual action to inhibit biofilm formation and decrease bacterial growth. In this study, the synthesized RHL-FeO@PVA@-CoA/GA biosurfactant NPs have interesting properties, making them excellent candidates for targeted drug delivery by inhibiting bacterial growth and downregulating biofilm-associated and gene loci.

摘要

表面生长的抗生素耐药病原菌,如大肠杆菌和金黄色葡萄球菌,由于临床治疗中的困境,正在成为全球健康挑战。此外,它们的发病机制,包括越来越严重的抗微生物耐药性和生物膜形成,使得它们难以通过传统疗法进行治疗。因此,开发新型的抗病毒策略无疑将为对抗这些耐药细菌感染提供一条途径。在这方面,我们开发了新型的生物表面活性剂涂层纳米粒子,通过使用最常用的聚合物共涂层 (PVA) 将鼠李糖脂 (RHL) 涂层的 FeO 纳米粒子 (NPs) 与 - 香豆酸 (-CoA) 和没食子酸 (GA) 抗菌药物的抗粘附/抗生物膜特性结合起来,从而扩大有效抗菌药物的范围,并通过简单的制备方法实现协同作用的机制。从机制上讲,裸 FeO NPs 的平均粒径约为 15nm,而 RHL 涂层的 FeO@PVA@-CoA/GA 约为 254nm,zeta 电位从-18.7mV 下降到-34.3mV,这有助于提高稳定性。我们的数据表明,RHL-FeO@PVA@-CoA/GA 生物表面活性剂 NPs 可以显著干扰细菌生长,并通过下调 和 操纵子,显著抑制生物膜形成超过 50%,这分别负责金黄色葡萄球菌和大肠杆菌中粘液层形成和卷曲菌毛的产生。RHL-FeO@PVA@-CoA/GA 生物表面活性剂 NPs 的活性方面的新颖性揭示了它们作为一种替代多靶抗病毒候选物的潜在效果,可通过抑制生物膜的发展来最大限度地减少感染的严重程度。因此,它们未来可用于抗菌涂层和伤口敷料。抗生素耐药性对人类构成巨大威胁和挑战。因此,寻找替代方法来靶向和消除植物、动物和海洋微生物中的微生物是当今世界关注的问题之一。此外,金黄色葡萄球菌和大肠杆菌对标准抗菌药物的非凡耐药能力是目前所有治疗方法的困境。耐甲氧西林金黄色葡萄球菌 (MRSA) 和万古霉素耐药金黄色葡萄球菌 (VRSA) 已广泛传播,导致没有治疗方法能够治疗这些威胁性病原体。引起严重食源性疾病的最广泛认可的血清型是大肠杆菌 O157:H7、O26:H11 和 O78:H10,它们显示出越来越高的抗药性率。因此,迫切需要一种具有双重作用的有效疗法,既能抑制生物膜形成,又能抑制细菌生长。在这项研究中,合成的 RHL-FeO@PVA@-CoA/GA 生物表面活性剂 NPs 具有有趣的特性,使其成为通过抑制细菌生长和下调与生物膜相关的 和 基因座来进行靶向药物递送的优秀候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/6dda0230750d/spectrum.00250-22-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/901086b55b20/spectrum.00250-22-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/1f05550cbb1d/spectrum.00250-22-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/175219442cee/spectrum.00250-22-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/084def83373a/spectrum.00250-22-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/b1039879c051/spectrum.00250-22-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/bc9c712715c7/spectrum.00250-22-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/d6c4a2c80e92/spectrum.00250-22-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/16a3e0559235/spectrum.00250-22-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/d2d7e404be60/spectrum.00250-22-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/6dda0230750d/spectrum.00250-22-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/901086b55b20/spectrum.00250-22-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/1f05550cbb1d/spectrum.00250-22-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/175219442cee/spectrum.00250-22-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/084def83373a/spectrum.00250-22-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/b1039879c051/spectrum.00250-22-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/bc9c712715c7/spectrum.00250-22-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/d6c4a2c80e92/spectrum.00250-22-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/16a3e0559235/spectrum.00250-22-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/d2d7e404be60/spectrum.00250-22-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/320a/9430161/6dda0230750d/spectrum.00250-22-f010.jpg

相似文献

[1]
Rhamnolipid-Coated Iron Oxide Nanoparticles as a Novel Multitarget Candidate against Major Foodborne E. coli Serotypes and Methicillin-Resistant S. aureus.

Microbiol Spectr. 2022-8-31

[2]
Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties.

J Hazard Mater. 2018-10-19

[3]
Effect of ZnO nanoparticles on methicillin, vancomycin, linezolid resistance and biofilm formation in Staphylococcus aureus isolates.

Ann Clin Microbiol Antimicrob. 2021-8-21

[4]
Potential mechanism of gallic acid-coated iron oxide nanoparticles against associated genes of Klebsiella pneumoniae capsule, antibacterial and antibiofilm.

Microsc Res Tech. 2024-11

[5]
Tackling strong biofilm and multi-virulent vancomycin-resistant via natural alkaloid-based porous nanoparticles: perspective towards near future eradication.

Front Cell Infect Microbiol. 2023

[6]
Antibacterial and antibiofilm potentials of vancomycin-loaded niosomal drug delivery system against methicillin-resistant Staphylococcus aureus (MRSA) infections.

BMC Biotechnol. 2024-7-8

[7]
Gallic acid exerts antibiofilm activity by inhibiting methicillin-resistant Staphylococcus aureus adhesion.

Sci Rep. 2024-7-26

[8]
Role of Extracellular DNA in Dalbavancin Activity against Methicillin-Resistant Staphylococcus aureus (MRSA) Biofilms in Patients with Skin and Soft Tissue Infections.

Microbiol Spectr. 2022-4-27

[9]
[Synthesis of antibiotic loaded polylactic acid nanoparticles and their antibacterial activity against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus].

Biomedica. 2017-1-24

[10]
Tailoring Nanoparticle-Biofilm Interactions to Increase the Efficacy of Antimicrobial Agents Against .

Int J Nanomedicine. 2020-7-7

引用本文的文献

[1]
Targeted inhibition of E. coli adhesion using antisense oligonucleotides: an approach to combat bacteria via CsrB targeting.

World J Microbiol Biotechnol. 2025-5-6

[2]
Hexagonal zinc oxide nanoparticles: a novel approach to combat multidrug-resistant biofilms in feline urinary tract infections.

Front Cell Infect Microbiol. 2025-1-24

[3]
Novel silver nanoparticle-based biomaterials for combating biofilms.

Front Microbiol. 2025-1-9

[4]
Natural compounds in the fight against biofilms: a review of antibiofilm strategies.

Front Pharmacol. 2024-11-20

[5]
A Novel Subsp. T1 Strain from Cow's Milk: Homeostatic and Antibacterial Activity against ESBL-Producing .

Antibiotics (Basel). 2024-9-27

[6]
Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity.

ACS Omega. 2024-7-25

[7]
Targeting bacterial biofilm-related genes with nanoparticle-based strategies.

Front Microbiol. 2024-5-22

[8]
An Alternative Approach Using Nano-garlic Emulsion and its Synergy with Antibiotics for Controlling Biofilm-Producing Multidrug-Resistant in Chicken.

Indian J Microbiol. 2023-12

[9]
Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications.

Pharmaceutics. 2023-8-18

[10]
Modulatory Effect of Competitive Exclusion on the Transmission of ESBL E. coli in Chickens.

Probiotics Antimicrob Proteins. 2024-6

本文引用的文献

[1]
Preparation, urease inhibition mechanisms, and anti- activities of hesperetin-7-rhamnoglucoside.

Curr Res Microb Sci. 2021-12-29

[2]
Magnetic Lateral Flow Immunoassay for Small Extracellular Vesicles Quantification: Application to Colorectal Cancer Biomarker Detection.

Sensors (Basel). 2021-5-28

[3]
Co-delivery of hesperidin and clarithromycin in a nanostructured lipid carrier for the eradication of Helicobacter pylori in vitro.

Bioorg Chem. 2021-7

[4]
Chitosan-based nanoparticles as delivery-carrier for promising antimicrobial glycolipid biosurfactant to improve the eradication rate of biofilm.

J Biomater Sci Polym Ed. 2021-4

[5]
tuning proangiogenic factor-mediated immunotolerance synergizes the tumoricidal immunity via a hypoxia-triggerable liposomal bio-nanoreactor.

Theranostics. 2020

[6]
Design of γ-AlOOH, γ-MnOOH, and α-MnO nanorods as advanced antibacterial active agents.

Dalton Trans. 2020-6-29

[7]
Effects of sub-inhibitory concentrations of meropenem and tigecycline on the expression of genes regulating pili, efflux pumps and virulence factors involved in biofilm formation by .

Infect Drug Resist. 2019-5-7

[8]
Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties.

J Hazard Mater. 2018-10-19

[9]
Methods for evaluating antimicrobial activity: A review.

J Pharm Anal. 2016-4

[10]
The specific effect of gallic acid on Escherichia coli biofilm formation by regulating pgaABCD genes expression.

Appl Microbiol Biotechnol. 2018-1-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索