文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

逆转癌症中的T细胞耗竭:从PD-1/PD-L1免疫检查点阻断中学到的经验教训。

Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade.

作者信息

Budimir Natalija, Thomas Graham D, Dolina Joseph S, Salek-Ardakani Shahram

机构信息

Cancer Immunology Discovery, Pfizer Inc., San Diego, California.

出版信息

Cancer Immunol Res. 2022 Feb;10(2):146-153. doi: 10.1158/2326-6066.CIR-21-0515. Epub 2021 Dec 22.


DOI:10.1158/2326-6066.CIR-21-0515
PMID:34937730
Abstract

Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) therapy has revolutionized the treatment of many types of cancer over the past decade. The initial therapeutic hypothesis underlying the mechanism of anti-PD-1/PD-L1 ICB was built around the premise that it acts locally in the tumor, reversing the exhaustion of PD-1CD8 T cells by "releasing the brakes." However, recent studies have provided unprecedented insight into the complexity within the CD8 T-cell pool in the tumor microenvironment (TME). Single-cell RNA sequencing and epigenetic profiling studies have identified novel cell surface markers, revealing heterogeneity within CD8 T-cell states classified as unique. Moreover, these studies highlighted that following ICB, CD8 T-cell states within and outside the TME possess a differential capacity to respond, mobilize to the TME, and seed an effective antitumor immune response. In aggregate, these recent developments have led to a reevaluation of our understanding of both the underlying mechanisms and the sites of action of ICB therapy. Here, we discuss the evidence for the reversibility of CD8 T-cell exhaustion after ICB treatment and its implication for the further development of cancer immunotherapy.

摘要

在过去十年中,抗程序性死亡蛋白1(PD-1)/程序性死亡配体1(PD-L1)免疫检查点阻断(ICB)疗法彻底改变了多种癌症的治疗方式。抗PD-1/PD-L1 ICB作用机制的最初治疗假说是基于这样一个前提,即它在肿瘤局部起作用,通过“松开刹车”来逆转PD-1阳性CD8 T细胞的耗竭。然而,最近的研究为肿瘤微环境(TME)中CD8 T细胞库的复杂性提供了前所未有的见解。单细胞RNA测序和表观遗传图谱研究已经确定了新的细胞表面标志物,揭示了分类为独特的CD8 T细胞状态内的异质性。此外,这些研究强调,在ICB治疗后,TME内外的CD8 T细胞状态在响应、动员到TME以及引发有效的抗肿瘤免疫反应方面具有不同的能力。总的来说,这些最新进展促使我们重新评估对ICB治疗的潜在机制和作用位点的理解。在这里,我们讨论ICB治疗后CD8 T细胞耗竭可逆性的证据及其对癌症免疫治疗进一步发展的意义。

相似文献

[1]
Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade.

Cancer Immunol Res. 2022-2

[2]
Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3.

J Immunother Cancer. 2021-12

[3]
CD4 T-cell epitope-based heterologous prime-boost vaccination potentiates anti-tumor immunity and PD-1/PD-L1 immunotherapy.

J Immunother Cancer. 2022-5

[4]
Discovery of a novel small molecule as CD47/SIRPα and PD-1/PD-L1 dual inhibitor for cancer immunotherapy.

Cell Commun Signal. 2024-3-11

[5]
Tumor-targeted interleukin-12 synergizes with entinostat to overcome PD-1/PD-L1 blockade-resistant tumors harboring MHC-I and APM deficiencies.

J Immunother Cancer. 2022-6

[6]
Enhanced Efficacy of Simultaneous PD-1 and PD-L1 Immune Checkpoint Blockade in High-Grade Serous Ovarian Cancer.

Cancer Res. 2021-1-1

[7]
A risk score combining co-expression modules related to myeloid cells and alternative splicing associates with response to PD-1/PD-L1 blockade in non-small cell lung cancer.

Front Immunol. 2023

[8]
Oncolytic virus oHSV2 combined with PD-1/PD-L1 inhibitors exert antitumor activity by mediating CD4 + T and CD8 + T cell infiltration in the lymphoma tumor microenvironment.

Autoimmunity. 2023-12

[9]
Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies.

Front Med. 2023-10

[10]
Janus Silica Nanoparticle-Based Tumor Microenvironment Modulator for Restoring Tumor Sensitivity to Programmed Cell Death Ligand 1 Immune Checkpoint Blockade Therapy.

ACS Nano. 2023-8-8

引用本文的文献

[1]
Integration of humanized ROBO1 CAR in PD-1 locus in natural killer cells delivers synergistic tumor-killing effect against non-small cell lung cancer.

Cancer Gene Ther. 2025-9-5

[2]
Cuproptosis-Related Gene FDX1 Induces Malignant Progression and Immune Suppression in Triple-Negative Breast Cancer.

Biochem Genet. 2025-9-5

[3]
Comprehensive analysis of MAGE-A10 in pan-cancer and its validation in gastric cancer.

Sci Rep. 2025-9-1

[4]
Neurotransmitters: an emerging target for therapeutic resistance to tumor immune checkpoint inhibitors.

Mol Cancer. 2025-8-11

[5]
Pygo2+ T cells possess immunosuppressive features and inferior immunotherapeutic response in gastric cancer.

Front Immunol. 2025-7-23

[6]
Dendritic cell membrane-based DCsLipo@MnO@siCTLA4@PD-1α nanomedicine for the treatment of Lynch syndrome-related colorectal cancer.

Mater Today Bio. 2025-7-1

[7]
Dual Targeting of Inflammatory and Immune Checkpoint Pathways to Overcome Radiotherapy Resistance in Esophageal Squamous Cell Carcinoma.

J Inflamm Res. 2025-7-12

[8]
Qingrehuoxue formula enhances anti-PD-1 immunotherapy in NSCLC by remodeling the tumor immune microenvironment via TREM2 signaling.

BMC Complement Med Ther. 2025-7-16

[9]
T cells in cancer: mechanistic insights and therapeutic advances.

Biomark Res. 2025-7-15

[10]
Structure-activity relationship of F-labeled PD-L1-targeting small molecule ligands: impact of radiolabeling strategy on affinity and in vivo performance.

EJNMMI Radiopharm Chem. 2025-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索