Suppr超能文献

基于通气模式评估重症监护病房中机械通气患者的不同步事件

Assessing the Asynchrony Event Based on the Ventilation Mode for Mechanically Ventilated Patients in ICU.

作者信息

Muhamad Sauki Nur Sa'adah, Damanhuri Nor Salwa, Othman Nor Azlan, Chiew Meng Belinda Chong, Chiew Yeong Shiong, Mat Nor Mohd Basri

机构信息

School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh 13500, Malaysia.

School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia.

出版信息

Bioengineering (Basel). 2021 Dec 18;8(12):222. doi: 10.3390/bioengineering8120222.

Abstract

Respiratory system modelling can assist clinicians in making clinical decisions during mechanical ventilation (MV) management in intensive care. However, there are some cases where the MV patients produce asynchronous breathing (asynchrony events) due to the spontaneous breathing (SB) effort even though they are fully sedated. Currently, most of the developed models are only suitable for fully sedated patients, which means they cannot be implemented for patients who produce asynchrony in their breathing. This leads to an incorrect measurement of the actual underlying mechanics in these patients. As a result, there is a need to develop a model that can detect asynchrony in real-time and at the bedside throughout the ventilated days. This paper demonstrates the asynchronous event detection of MV patients in the ICU of a hospital by applying a developed extended time-varying elastance model. Data from 10 mechanically ventilated respiratory failure patients admitted at the International Islamic University Malaysia (IIUM) Hospital were collected. The results showed that the model-based technique precisely detected asynchrony events (AEs) throughout the ventilation days. The patients showed an increase in AEs during the ventilation period within the same ventilation mode. SIMV mode produced much higher asynchrony compared to SPONT mode ( < 0.05). The link between AEs and the lung elastance (AUC Edrs) was also investigated. It was found that when the AEs increased, the AUC Edrs decreased and vice versa based on the results obtained in this research. The information of AEs and AUC Edrs provides the true underlying lung mechanics of the MV patients. Hence, this model-based method is capable of detecting the AEs in fully sedated MV patients and providing information that can potentially guide clinicians in selecting the optimal ventilation mode of MV, allowing for precise monitoring of respiratory mechanics in MV patients.

摘要

呼吸系统建模有助于临床医生在重症监护中进行机械通气(MV)管理时做出临床决策。然而,在某些情况下,即使MV患者已完全镇静,由于自主呼吸(SB)的作用,他们仍会产生异步呼吸(异步事件)。目前,大多数已开发的模型仅适用于完全镇静的患者,这意味着它们无法用于呼吸产生异步的患者。这导致对这些患者实际潜在力学的测量不准确。因此,需要开发一种能够在整个通气期间实时、在床边检测异步的模型。本文通过应用已开发的扩展时变弹性模型,展示了一家医院重症监护病房中MV患者的异步事件检测。收集了马来西亚国际伊斯兰大学(IIUM)医院收治的10例机械通气呼吸衰竭患者的数据。结果表明,基于模型的技术在整个通气期间精确检测到了异步事件(AEs)。在相同通气模式下,患者在通气期间的AEs有所增加。与SPONT模式相比,SIMV模式产生的异步性要高得多(<0.05)。还研究了AEs与肺弹性(AUC Edrs)之间的联系。根据本研究获得的结果发现,当AEs增加时,AUC Edrs降低,反之亦然。AEs和AUC Edrs的信息提供了MV患者真正的潜在肺力学情况。因此,这种基于模型的方法能够检测完全镇静的MV患者中的AEs,并提供可能指导临床医生选择MV最佳通气模式的信息,从而实现对MV患者呼吸力学的精确监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01fe/8698314/5763461b8cc3/bioengineering-08-00222-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验