Steger Mark, Janke Svenja M, Sercel Peter C, Larson Bryon W, Lu Haipeng, Qin Xixi, Yu Victor Wen-Zhe, Blum Volker, Blackburn Jeffrey L
National Renewable Energy Laboratory, Golden, CO 80401, USA.
Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
Nanoscale. 2022 Jan 20;14(3):752-765. doi: 10.1039/d1nr06899g.
Two-dimensional metal-halide perovskites (MHPs) are versatile solution-processed organic/inorganic quantum wells where the structural anisotropy creates profound anisotropy in their electronic and excitonic properties and associated optical constants. We here employ a wholistic framework, based on semiempirical modeling (k·p/effective mass theory calculations) informed by hybrid density functional theory (DFT) and multimodal spectroscopic ellipsometry on (CH(CH)NH)PbI films and crystals, that allows us to link the observed optical properties and anisotropy precisely to the underlying physical parameters that shape the electronic structure of a layered MHP. We find substantial frequency-dependent anisotropy in the optical constants and close correspondence between experiment and theory, demonstrating a high degree of in-plane alignment of the two-dimensional planes in both spin-coated thin films and cleaved single crystals made in this study. Hybrid DFT results elucidate the degree to which organic and inorganic frontier orbitals contribute to optical transitions polarized along a particular axis. The combined experimental and theoretical approach enables us to estimate the fundamental electronic bandgap of 2.65-2.68 eV in this prototypical 2D perovskite and to determine the spin-orbit coupling ( = 1.20 eV) and effective crystal field ( = -1.36 eV) which break the degeneracy of the frontier conduction band states and determine the exciton fine structure. The methods and results described here afford a better understanding of the connection between structure and induced optical anisotropy in quantum-confined MHPs, an important structure-property relationship for optoelectronic applications and devices.
二维金属卤化物钙钛矿(MHP)是通过溶液法制备的多功能有机/无机量子阱,其结构各向异性在电子、激子特性及相关光学常数方面产生了显著的各向异性。在此,我们采用了一个全面的框架,该框架基于由混合密度泛函理论(DFT)提供信息的半经验建模(k·p/有效质量理论计算)以及对(CH(CH)NH)PbI薄膜和晶体的多模态光谱椭偏测量,这使我们能够将观察到的光学性质和各向异性精确地与塑造层状MHP电子结构的潜在物理参数联系起来。我们发现光学常数中存在显著的频率依赖性各向异性,并且实验与理论之间具有紧密的对应关系,这表明在本研究制备的旋涂薄膜和劈裂单晶中,二维平面具有高度的面内取向。混合DFT结果阐明了有机和无机前沿轨道对沿特定轴偏振的光学跃迁的贡献程度。实验与理论相结合的方法使我们能够估计这种典型二维钙钛矿的基本电子带隙为2.65 - 2.68 eV,并确定打破前沿导带态简并性并决定激子精细结构的自旋 - 轨道耦合( = 1.20 eV)和有效晶体场( = -1.36 eV)。本文所述的方法和结果有助于更好地理解量子限制MHP中结构与诱导光学各向异性之间的联系,这是光电子应用和器件中重要的结构 - 性质关系。