Suppr超能文献

超越机械听觉学习:广义听觉学习的神经模式。

Going Beyond Rote Auditory Learning: Neural Patterns of Generalized Auditory Learning.

机构信息

The University of Chicago.

Huron University College, London, Canada.

出版信息

J Cogn Neurosci. 2022 Feb 1;34(3):425-444. doi: 10.1162/jocn_a_01805.

Abstract

The ability to generalize across specific experiences is vital for the recognition of new patterns, especially in speech perception considering acoustic-phonetic pattern variability. Indeed, behavioral research has demonstrated that listeners are able via a process of generalized learning to leverage their experiences of past words said by difficult-to-understand talker to improve their understanding for new words said by that talker. Here, we examine differences in neural responses to generalized versus rote learning in auditory cortical processing by training listeners to understand a novel synthetic talker. Using a pretest-posttest design with EEG, participants were trained using either (1) a large inventory of words where no words were repeated across the experiment (generalized learning) or (2) a small inventory of words where words were repeated (rote learning). Analysis of long-latency auditory evoked potentials at pretest and posttest revealed that rote and generalized learning both produced rapid changes in auditory processing, yet the nature of these changes differed. Generalized learning was marked by an amplitude reduction in the N1-P2 complex and by the presence of a late negativity wave in the auditory evoked potential following training; rote learning was marked only by temporally later scalp topography differences. The early N1-P2 change, found only for generalized learning, is consistent with an active processing account of speech perception, which proposes that the ability to rapidly adjust to the specific vocal characteristics of a new talker (for which rote learning is rare) relies on attentional mechanisms to selectively modify early auditory processing sensitivity.

摘要

跨特定经验进行泛化的能力对于识别新模式至关重要,特别是在考虑到语音感知的声学-语音模式可变性的情况下。事实上,行为研究表明,听众能够通过广义学习的过程,利用他们对难以理解的说话者所说的过去单词的经验,来提高他们对该说话者所说的新单词的理解。在这里,我们通过训练听众来理解新的合成说话者,研究了听觉皮层处理中广义学习与死记硬背学习的神经反应差异。使用 EEG 的预测试后测试设计,参与者接受了以下两种训练之一:(1)大量单词的训练,其中实验中没有重复单词(广义学习);(2)小量单词的训练,其中单词重复出现(死记硬背学习)。对预测试和后测试的长潜伏期听觉诱发电位的分析表明,死记硬背学习和广义学习都导致了听觉处理的快速变化,但这些变化的性质不同。广义学习的特征是 N1-P2 复合体的振幅降低,以及在训练后听觉诱发电位中出现晚期负波;死记硬背学习仅以时间上更晚的头皮拓扑差异为特征。仅在广义学习中发现的早期 N1-P2 变化与语音感知的主动处理解释一致,该解释提出,快速适应新说话者的特定声音特征(死记硬背学习很少见)的能力依赖于注意力机制,以选择性地修改早期听觉处理敏感性。

相似文献

1
Going Beyond Rote Auditory Learning: Neural Patterns of Generalized Auditory Learning.
J Cogn Neurosci. 2022 Feb 1;34(3):425-444. doi: 10.1162/jocn_a_01805.
2
Informational Masking Effects on Neural Encoding of Stimulus Onset and Acoustic Change.
Ear Hear. 2019 Jan/Feb;40(1):156-167. doi: 10.1097/AUD.0000000000000604.
3
5
Neural Correlates of Phonetic Learning in Postlingually Deafened Cochlear Implant Listeners.
Ear Hear. 2016 Sep-Oct;37(5):514-28. doi: 10.1097/AUD.0000000000000287.
6
Auditory cortical activity to different voice onset times in cochlear implant users.
Clin Neurophysiol. 2016 Feb;127(2):1603-1617. doi: 10.1016/j.clinph.2015.10.049. Epub 2015 Nov 10.
8
Auditory long latency responses to tonal and speech stimuli.
J Speech Lang Hear Res. 2012 Apr;55(2):447-59. doi: 10.1044/1092-4388(2011/10-0364). Epub 2011 Dec 22.
9
Aging Effects on Cortical Responses to Tones and Speech in Adult Cochlear-Implant Users.
J Assoc Res Otolaryngol. 2021 Dec;22(6):719-740. doi: 10.1007/s10162-021-00804-4. Epub 2021 Jul 6.
10
Effects of background noise on inter-trial phase coherence and auditory N1-P2 responses to speech stimuli.
Hear Res. 2015 Oct;328:113-9. doi: 10.1016/j.heares.2015.08.002. Epub 2015 Aug 11.

本文引用的文献

1
Cortical mechanisms of talker normalization in fluent sentences.
Brain Lang. 2020 Feb;201:104722. doi: 10.1016/j.bandl.2019.104722. Epub 2019 Dec 10.
2
Voice-sensitive brain networks encode talker-specific phonetic detail.
Brain Lang. 2017 Feb;165:33-44. doi: 10.1016/j.bandl.2016.11.001. Epub 2016 Nov 27.
3
Speech perception as an active cognitive process.
Front Syst Neurosci. 2014 Mar 17;8:35. doi: 10.3389/fnsys.2014.00035. eCollection 2014.
4
Is the auditory evoked P2 response a biomarker of learning?
Front Syst Neurosci. 2014 Feb 20;8:28. doi: 10.3389/fnsys.2014.00028. eCollection 2014.
5
Constraints on the perception of synthetic speech generated by rule.
Behav Res Methods Instrum Comput. 1985 Mar 1;17(2):235-242. doi: 10.3758/bf03214389.
6
Attention for speaking: domain-general control from the anterior cingulate cortex in spoken word production.
Front Hum Neurosci. 2013 Dec 9;7:832. doi: 10.3389/fnhum.2013.00832. eCollection 2013.
7
8
A source analysis of the late human auditory evoked potentials.
J Cogn Neurosci. 1989 Fall;1(4):336-55. doi: 10.1162/jocn.1989.1.4.336.
9
Sleep restores loss of generalized but not rote learning of synthetic speech.
Cognition. 2013 Sep;128(3):280-6. doi: 10.1016/j.cognition.2013.04.007. Epub 2013 Jun 4.
10
Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics.
Comput Intell Neurosci. 2011;2011:938925. doi: 10.1155/2011/938925. Epub 2011 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验