Grela Jacek, Nowak Maciej A, Tarnowski Wojciech
Institute of Theoretical Physics, Jagiellonian University, 30-348 Cracow, Poland.
Mark Kac Complex Systems Research Center, Jagiellonian University, 30-348 Cracow, Poland.
Phys Rev E. 2021 Nov;104(5-1):054111. doi: 10.1103/PhysRevE.104.054111.
The standard approach to dynamical random matrix models relies on the description of trajectories of eigenvalues. Using the analogy from optics, based on the duality between the Fermat principle (rays) and the Huygens principle (wavefronts), we formulate the Hamilton-Jacobi dynamics for large random matrix models. The resulting equations describe a broad class of random matrix models in a unified way, including normal (Hermitian or unitary) as well as strictly non-normal dynamics. This formalism applied to Brownian bridge dynamics allows one to calculate the asymptotics of the Harish-Chandra-Itzykson-Zuber integrals.
动态随机矩阵模型的标准方法依赖于对特征值轨迹的描述。基于光学中的类比,利用费马原理(光线)和惠更斯原理(波前)之间的对偶性,我们为大型随机矩阵模型制定了哈密顿 - 雅可比动力学。所得方程以统一的方式描述了广泛的随机矩阵模型类别,包括正态(厄米特或酉)以及严格非正态动力学。应用于布朗桥动力学的这种形式体系使人们能够计算哈里什 - 钱德拉 - 伊茨基松 - 祖伯积分的渐近性。