Suppr超能文献

基于压电微隔膜泵的微流体细胞运输

Microfluidic Cell Transport with Piezoelectric Micro Diaphragm Pumps.

作者信息

Bußmann Agnes, Thalhofer Thomas, Hoffmann Sophie, Daum Leopold, Surendran Nivedha, Hayden Oliver, Hubbuch Jürgen, Richter Martin

机构信息

Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany.

MAB-Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.

出版信息

Micromachines (Basel). 2021 Nov 27;12(12):1459. doi: 10.3390/mi12121459.

Abstract

The automated transport of cells can enable far-reaching cell culture research. However, to date, such automated transport has been achieved with large pump systems that often come with long fluidic connections and a large power consumption. Improvement is possible with space- and energy-efficient piezoelectric micro diaphragm pumps, though a precondition for a successful use is to enable transport with little to no mechanical stress on the cell suspension. This study evaluates the impact of the microfluidic transport of cells with the piezoelectric micro diaphragm pump developed by our group. It includes the investigation of different actuation signals. Therewith, we aim to achieve optimal fluidic performance while maximizing the cell viability. The investigation of fluidic properties proves a similar performance with a hybrid actuation signal that is a rectangular waveform with sinusoidal flanks, compared to the fluidically optimal rectangular actuation. The comparison of the cell transport with three actuation signals, sinusoidal, rectangular, and hybrid actuation shows that the hybrid actuation causes less damage than the rectangular actuation. With a 5% reduction of the cell viability it causes similar strain to the transport with sinusoidal actuation. Piezoelectric micro diaphragm pumps with the fluidically efficient hybrid signal actuation are therefore an interesting option for integrable microfluidic workflows.

摘要

细胞的自动运输能够推动深远的细胞培养研究。然而,迄今为止,这种自动运输是通过大型泵系统实现的,这些系统通常伴随着长流体连接和高功耗。使用空间和能源效率高的压电微隔膜泵有可能实现改进,不过成功应用的一个前提是在细胞悬液上施加很小或几乎没有机械应力的情况下实现运输。本研究评估了我们团队开发的压电微隔膜泵对细胞进行微流体运输的影响。其中包括对不同驱动信号的研究。通过这种方式,我们旨在实现最佳的流体性能,同时最大限度地提高细胞活力。对流体特性的研究表明,与流体最优的矩形驱动相比,具有正弦波边缘的矩形波形混合驱动信号具有相似的性能。对正弦、矩形和混合驱动三种驱动信号的细胞运输进行比较表明,混合驱动比矩形驱动造成的损伤更小。它使细胞活力降低5%,与正弦驱动运输造成的应变相似。因此,具有流体高效混合信号驱动的压电微隔膜泵是可集成微流体工作流程的一个有趣选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38f2/8708163/5d777a820678/micromachines-12-01459-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验