磁泳电路:用于精确单细胞操作的设备设计和实现综述。
Magnetophoretic circuits: A review of device designs and implementation for precise single-cell manipulation.
机构信息
Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, P.O. Box: 14115-111, Iran.
Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, P.O. Box: 14115-111, Iran.
出版信息
Anal Chim Acta. 2023 Sep 1;1272:341425. doi: 10.1016/j.aca.2023.341425. Epub 2023 May 31.
Lab-on-a-chip tools have played a pivotal role in advancing modern biology and medicine. A key goal in this field is to precisely transport single particles and cells to specific locations on a chip for quantitative analysis. To address this large and growing need, magnetophoretic circuits have been developed in the last decade to manipulate a large number of single bioparticles in a parallel and highly controlled manner. Inspired by electrical circuits, magnetophoretic circuits are composed of passive and active circuit elements to offer commensurate levels of control and automation for transporting individual bioparticles. These specifications make them unique compared to other technologies in addressing crucial bioanalytical applications and answering fundamental questions buried in highly heterogeneous cell populations. In this comprehensive review, we describe key theoretical considerations for manufacturing and simulating magnetophoretic circuits. We provide a detailed tutorial for operating magnetophoretic devices containing different circuit elements (e.g., conductors, diodes, capacitors, and transistors). Finally, we provide a critical comparison of the utility of these devices to other microchip-based platforms for cellular manipulation, and discuss how they may address unmet needs in single-cell biology and medicine.
微流控芯片工具在推动现代生物学和医学发展方面发挥了关键作用。该领域的一个关键目标是精确地将单个颗粒和细胞运输到芯片上的特定位置进行定量分析。为了满足这一巨大且不断增长的需求,在过去十年中开发了电泳电路,以平行且高度可控的方式操纵大量单个生物颗粒。受电路的启发,电泳电路由无源和有源电路元件组成,为运输单个生物颗粒提供了相当水平的控制和自动化。与其他技术相比,这些特性使它们在解决关键的生物分析应用和回答高度异质细胞群体中隐藏的基本问题方面具有独特性。在这篇全面的综述中,我们描述了制造和模拟电泳电路的关键理论考虑因素。我们提供了一个详细的教程,介绍了包含不同电路元件(例如导体、二极管、电容器和晶体管)的电泳设备的操作。最后,我们对这些设备与其他基于微芯片的细胞操纵平台的效用进行了批判性比较,并讨论了它们如何满足单细胞生物学和医学领域未满足的需求。
相似文献
Nat Commun. 2014-5-14
Biomicrofluidics. 2022-8-16
Adv Sci (Weinh). 2022-2
Adv Funct Mater. 2016-6-14
Int J Mol Sci. 2014-10-10
引用本文的文献
Biosensors (Basel). 2024-4-11
本文引用的文献
Proc Natl Acad Sci U S A. 2023-2-28
Biomicrofluidics. 2022-8-16
Biomicrofluidics. 2020-5-20
Micromachines (Basel). 2021-11-27