Piñón Reyes Ana C, Ambrosio Lázaro Roberto C, Monfil Leyva Karim, Luna López José A, Flores Méndez Javier, Heredia Jiménez Aurelio H, Muñoz Zurita Ana L, Severiano Carrillo Francisco, Ojeda Durán Esteban
Centro de Investigaciones en Dispositivos Semiconductores (CIDS-ICUAP), Benemérita Universidad Autónoma de Puebla (BUAP), Av. San Claudio y 14 sur, Edif. IC5 C.U., Col. San Manuel, Puebla C.P. 72570, Mexico.
Facultad de Electrónica, Benemérita Universidad Autónoma de Puebla (BUAP)-Ciudad Universitaria, Blvd. Valsequillo y Esquina, Av. San Claudio s/n, Col. San Manuel, Puebla C.P. 72570, Mexico.
Micromachines (Basel). 2021 Dec 1;12(12):1508. doi: 10.3390/mi12121508.
In this paper, a planar heterojunction simulation of Sn-based iodide perovskite solar cell () is proposed. The solar cell structure consists of a Fluorine-doped tin oxide (FTO) substrate on which titanium oxide (TiO) is placed; this material will act as an electron transporting layer (ETL); then, we have the tin perovskite CHNHSnI (MASnI) which is the absorber layer and next a copper zinc and tin sulfide (CZTS) that will have the function of a hole transporting layer (HTL). This material is used due to its simple synthesis process and band tuning, in addition to presenting good electrical properties and stability; it is also a low-cost and non-toxic inorganic material. Finally, gold (Au) is placed as a back contact. The lead-free perovskite solar cell was simulated using a Solar Cell Capacitance Simulator (SCAPS-1D). The simulations were performed under AM 1.5G light illumination and focused on getting the best efficiency of the solar cell proposed. The thickness of MASnI and CZTS, band gap of CZTS, operating temperature in the range between 250 K and 350 K, acceptor concentration and defect density of absorber layer were the parameters optimized in the solar cell device. The simulation results indicate that absorber thicknesses of 500 nm and 300 nm for CZTS are appropriate for the solar cell. Further, when optimum values of the acceptor density () and defect density (), 10 cm and 10 cm, respectively, were used, the best electrical values were obtained: of 31.66 mA/cm, of 0.96 V, of 67% and of 20.28%. Due to the enhanced performance parameters, the structure of the device could be used in applications for a solar energy harvesting system.
本文提出了一种基于锡的碘化物钙钛矿太阳能电池()的平面异质结模拟。太阳能电池结构由氟掺杂氧化锡(FTO)衬底组成,其上放置有氧化钛(TiO);这种材料将作为电子传输层(ETL);然后,我们有锡钙钛矿CHNHSnI(MASnI)作为吸收层,接下来是具有空穴传输层(HTL)功能的铜锌锡硫化物(CZTS)。使用这种材料是因为其合成过程简单且能带可调,此外还具有良好的电学性能和稳定性;它也是一种低成本且无毒的无机材料。最后,放置金(Au)作为背接触。使用太阳能电池电容模拟器(SCAPS - 1D)对无铅钙钛矿太阳能电池进行了模拟。模拟是在AM 1.5G光照下进行的,重点是获得所提出的太阳能电池的最佳效率。MASnI和CZTS的厚度、CZTS的带隙、250 K至350 K范围内的工作温度、吸收层的受主浓度和缺陷密度是太阳能电池器件中优化的参数。模拟结果表明,对于太阳能电池,CZTS的吸收体厚度为500 nm和300 nm是合适的。此外,当分别使用受主密度()和缺陷密度()的最佳值10 cm和10 cm时,获得了最佳电学值:电流密度为31.66 mA/cm,电压为0.96 V,填充因子为67%,光电转换效率为20.28%。由于性能参数的提高,该器件结构可用于太阳能收集系统的应用中。