Jakalase Sindisiwe, Nqombolo Azile, Meyer Edson L, Agoro Mojeed A, Rono Nicholas
Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
Nanomaterials (Basel). 2024 Dec 15;14(24):2016. doi: 10.3390/nano14242016.
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells. Kesterite materials, known for their excellent optoelectronic properties and chemical stability, have gained attention for their potential as hole transport layer (HTL) materials in solar cells. In this study, the SCAPS-1D numerical simulator was used to analyze a solar cell with the configuration FTO/TiO/MoS/HTL/Ag. The electron transport layer (ETL) used was titanium dioxide (TiO), while CuFeSnS (CFTS), CuZnSnS (CZTSe), CuNiSnS (CNTS), and CuZnSnSe (CZTSSe) kesterite materials were evaluated as HTLs. MoS quantum dot served as the absorber, with FTO as the anode and silver as the back metal contact. The CFTS material outperformed the others, yielding a PCE of 25.86%, a fill factor (FF) of 38.79%, a short-circuit current density (J) of 34.52 mA cm, and an open-circuit voltage (V) of 1.93 V. This study contributes to the advancement of high-performance QDSSCs.
由于人口增长以及清洁能源资源获取受限,能源生产和存储对于发展中经济体而言是至关重要的挑战。常用于能源生产的化石燃料成本高昂,且通过温室气体排放造成环境污染。与其他第三代太阳能电池相比,量子点敏化太阳能电池(QDSSCs)因其稳定性、低成本和高功率转换效率(PCE)而提供了一种有前景的替代方案。以其优异的光电性能和化学稳定性而闻名的硫系化合物材料,因其作为太阳能电池中空穴传输层(HTL)材料的潜力而受到关注。在本研究中,使用SCAPS - 1D数值模拟器分析了具有FTO/TiO/MoS/HTL/Ag结构的太阳能电池。所使用的电子传输层(ETL)是二氧化钛(TiO),而将CuFeSnS(CFTS)、CuZnSnS(CZTSe)、CuNiSnS(CNTS)和CuZnSnSe(CZTSSe)硫系化合物材料作为HTL进行了评估。MoS量子点用作吸收体,FTO作为阳极,银作为背金属接触。CFTS材料表现优于其他材料,产生了25.86%的PCE、38.79%的填充因子(FF)、34.52 mA cm的短路电流密度(J)以及1.93 V的开路电压(V)。本研究有助于高性能QDSSCs的发展。