Suppr超能文献

碳化硅单晶衬底摩擦化学机械抛光中固相氧化剂作用机理的研究

Study on the Mechanism of Solid-Phase Oxidant Action in Tribochemical Mechanical Polishing of SiC Single Crystal Substrate.

作者信息

Qi Wanting, Cao Xiaojun, Xiao Wen, Wang Zhankui, Su Jianxiu

机构信息

School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China.

出版信息

Micromachines (Basel). 2021 Dec 12;12(12):1547. doi: 10.3390/mi12121547.

Abstract

NaCO-1.5 HO, KClO, KMnO, KIO, and NaOH were selected for dry polishing tests with a 6H-SiC single crystal substrate on a polyurethane polishing pad. The research results showed that all the solid-phase oxidants, except NaOH, could decompose to produce oxygen under the frictional action. After polishing with the five solid-phase oxidants, oxygen was found on the surface of SiC, indicating that all five solid-phase oxidants can have complex tribochemical reactions with SiC. Their reaction products are mainly SiO and (SiO)x. Under the action of friction, due to the high flash point temperature of the polishing interface, the oxygen generated by the decomposition of the solid-phase oxidant could oxidize the surface of SiC and generate a SiO oxide layer on the surface of SiC. On the other hand, SiC reacted with HO and generated a SiO oxide layer on the surface of SiC. After polishing with NaOH, the SiO oxide layer and soluble NaSiO could be generated on the SiC surface; therefore, the surface material removal rate (MRR) was the highest, and the surface roughness was the largest, after polishing. The lowest MRR was achieved after the dry polishing of SiC with KClO.

摘要

选择Na₂CO₃·1.5H₂O、KClO₃、KMnO₄、KIO₃和NaOH在聚氨酯抛光垫上对6H-SiC单晶衬底进行干法抛光试验。研究结果表明,除NaOH外,所有固相氧化剂在摩擦作用下都能分解产生氧气。用这五种固相氧化剂抛光后,在SiC表面发现了氧气,这表明所有五种固相氧化剂都能与SiC发生复杂的摩擦化学反应。它们的反应产物主要是SiO₂和(SiO)ₓ。在摩擦作用下,由于抛光界面的闪点温度较高,固相氧化剂分解产生的氧气会氧化SiC表面,并在SiC表面生成一层SiO₂氧化层。另一方面,SiC与H₂O反应,在SiC表面生成一层SiO₂氧化层。用NaOH抛光后,SiC表面会生成SiO₂氧化层和可溶性的Na₂SiO₃;因此,抛光后表面材料去除率(MRR)最高,表面粗糙度最大。用KClO₃对SiC进行干法抛光后,MRR最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b86/8703796/8ceb2d7b1259/micromachines-12-01547-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验