Crété Denis, Kermorvant Julien, Lemaître Yves, Marcilhac Bruno, Mesoraca Salvatore, Trastoy Juan, Ulysse Christian
Unité Mixte de Physique CNRS/THALES, Université de Paris-Saclay, CEDEX, 91720 Palaiseau, France.
THALES SIX, 92230 Gennevilliers, France.
Micromachines (Basel). 2021 Dec 20;12(12):1588. doi: 10.3390/mi12121588.
Arrays of superconducting quantum interference devices (SQUIDs) are highly sensitive magnetometers that can operate without a flux-locked loop, as opposed to single SQUID magnetometers. They have no source of ambiguity and benefit from a larger bandwidth. They can be used to measure absolute magnetic fields with a dynamic range scaling as the number of SQUIDs they contain. A very common arrangement for a series array of SQUIDs is with meanders as it uses the substrate area efficiently. As for most layouts with long arrays, this layout breaks the symmetry required for the elimination of adverse self-field effects. We investigate the scaling behavior of series arrays of SQUIDs, taking into account the self-field generated by the bias current flowing along the meander. We propose a design for the partial compensation of this self-field. In addition, we provide a comparison with the case of series arrays of long Josephson junctions, using the Fraunhofer pattern for applications in magnetometry. We find that compensation is required for arrays of the larger size and that, depending on the technology, arrays of long Josephson junctions may have better performance than arrays of SQUIDs.
与单个超导量子干涉器件(SQUID)磁力计不同,超导量子干涉器件阵列是高度灵敏的磁力计,无需磁通锁定环即可运行。它们没有模糊源,且具有更大的带宽优势。它们可用于测量绝对磁场,其动态范围随所含SQUID的数量而缩放。对于SQUID串联阵列,一种非常常见的布局是采用曲折线,因为它能有效利用衬底面积。对于大多数长阵列布局而言,这种布局打破了消除不利自场效应所需的对称性。我们研究了SQUID串联阵列的缩放行为,考虑了沿曲折线流动的偏置电流产生的自场。我们提出了一种对该自场进行部分补偿的设计。此外,我们使用用于磁力测量应用的夫琅禾费图案,将其与长约瑟夫森结串联阵列的情况进行了比较。我们发现,较大尺寸的阵列需要进行补偿,并且根据技术不同,长约瑟夫森结阵列可能比SQUID阵列具有更好的性能。