1] Oxide Nano Electronics Laboratory, Department of Physics, University of California San Diego, La Jolla, California 92093, USA [2] Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Oxide Nano Electronics Laboratory, Department of Physics, University of California San Diego, La Jolla, California 92093, USA.
Nat Nanotechnol. 2015 Jul;10(7):598-602. doi: 10.1038/nnano.2015.76. Epub 2015 Apr 27.
Since the discovery of the high-transition-temperature superconductors (HTSs), researchers have explored many methods to fabricate superconducting tunnel junctions from these materials for basic science purposes and applications. HTS circuits operating at liquid-nitrogen temperatures (∼77 K) would significantly reduce power requirements in comparison with those fabricated from conventional superconductors. The difficulty is that the superconducting coherence length is very short and anisotropic in these materials, typically ∼2 nm in the a-b plane and ∼0.2 nm along the c axis. The electrical properties of Josephson junctions are therefore sensitive to chemical variations and structural defects on atomic length scales. To make multiple uniform HTS junctions, control at the atomic level is required. In this Letter we demonstrate all-HTS Josephson superconducting tunnel junctions created by using a 500-pm-diameter focused beam of helium ions to directly write tunnel barriers into YBa2Cu3O(7-δ) (YBCO) thin films. We demonstrate the ability to control the barrier properties continuously from conducting to insulating by varying the irradiation dose. This technique could provide a reliable and reproducible pathway for scaling up quantum-mechanical circuits operating at liquid-nitrogen temperatures, as well as an avenue to conduct novel planar superconducting tunnelling studies for basic science.
自高温超导材料(HTS)被发现以来,研究人员已经探索了许多方法来用这些材料制造超导隧道结,以用于基础科学研究和应用。与由传统超导体制造的超导隧道结相比,在液氮温度(约 77K)下运行的 HTS 电路将显著降低对电力的需求。困难在于,在这些材料中,超导相干长度非常短且各向异性,在 a-b 平面内典型值约为 2nm,沿 c 轴方向约为 0.2nm。约瑟夫森结的电气性能因此对原子长度尺度上的化学变化和结构缺陷很敏感。为了制造多个均匀的 HTS 结,需要在原子水平上进行控制。在这封信件中,我们展示了使用直径为 500 微米的氦离子聚焦束直接在 YBa2Cu3O(7-δ)(YBCO)薄膜中写入隧道势垒,从而制造出的全 HTS 约瑟夫森超导隧道结。我们证明了通过改变辐照剂量,能够连续控制从导电到绝缘的势垒性质。这项技术为在液氮温度下运行的量子力学电路的扩展提供了可靠和可重复的途径,同时也为基础科学的新型平面超导隧道研究提供了途径。