Suppr超能文献

量子处理器中量子比特数字误差的半经典分析导论

Introduction to Semi-Classical Analysis for Digital Errors of Qubit in Quantum Processor.

作者信息

Hirota Osamu

机构信息

Quantum ICT Research Institute, Tamagawa University, Tokyo 194-8610, Japan.

Reserch and Development Initiative, Chuo University, Tokyo 112-8551, Japan.

出版信息

Entropy (Basel). 2021 Nov 26;23(12):1577. doi: 10.3390/e23121577.

Abstract

In recent years, remarkable progress has been achieved in the development of quantum computers. For further development, it is important to clarify properties of errors by quantum noise and environment noise. However, when the system scale of quantum processors is expanded, it has been pointed out that a new type of quantum error, such as nonlinear error, appears. It is not clear how to handle such new effects in information theory. First of all, one should make the characteristics of the error probability of qubits clear as communication channel error models in information theory. The purpose of this paper is to survey the progress for modeling the quantum noise effects that information theorists are likely to face in the future, to cope with such nontrivial errors mentioned above. This paper explains a channel error model to represent strange properties of error probability due to new quantum noise. By this model, specific examples on the features of error probability caused by, for example, quantum recurrence effects, collective relaxation, and external force, are given. As a result, it is possible to understand the meaning of strange features of error probability that do not exist in classical information theory without going through complex physical phenomena.

摘要

近年来,量子计算机的发展取得了显著进展。为了进一步发展,明确量子噪声和环境噪声引起的误差特性非常重要。然而,当量子处理器的系统规模扩大时,有人指出会出现一种新型的量子误差,比如非线性误差。在信息论中,尚不清楚如何处理这种新效应。首先,应将量子比特的误差概率特性明确为信息论中的通信信道误差模型。本文的目的是综述信息理论学家未来可能面临的对量子噪声效应进行建模的进展,以应对上述这类非平凡误差。本文解释了一种信道误差模型,以表征由新的量子噪声导致的误差概率的奇特特性。通过该模型,给出了例如量子递归效应、集体弛豫和外力等引起的误差概率特征的具体示例。结果,无需经历复杂的物理现象,就有可能理解经典信息论中不存在的误差概率奇特特征的含义。

相似文献

1
Introduction to Semi-Classical Analysis for Digital Errors of Qubit in Quantum Processor.
Entropy (Basel). 2021 Nov 26;23(12):1577. doi: 10.3390/e23121577.
2
Digital System Design for Quantum Error Correction Codes.
Contrast Media Mol Imaging. 2021 Dec 15;2021:1101911. doi: 10.1155/2021/1101911. eCollection 2021.
3
Experimental deterministic correction of qubit loss.
Nature. 2020 Sep;585(7824):207-210. doi: 10.1038/s41586-020-2667-0. Epub 2020 Sep 9.
4
Correlated charge noise and relaxation errors in superconducting qubits.
Nature. 2021 Jun;594(7863):369-373. doi: 10.1038/s41586-021-03557-5. Epub 2021 Jun 16.
5
Realization of three-qubit quantum error correction with superconducting circuits.
Nature. 2012 Feb 1;482(7385):382-5. doi: 10.1038/nature10786.
7
Quantum computation with universal error mitigation on a superconducting quantum processor.
Sci Adv. 2019 Sep 6;5(9):eaaw5686. doi: 10.1126/sciadv.aaw5686. eCollection 2019 Sep.
8
Error mitigation extends the computational reach of a noisy quantum processor.
Nature. 2019 Mar;567(7749):491-495. doi: 10.1038/s41586-019-1040-7. Epub 2019 Mar 27.
9
Realization of quantum error correction.
Nature. 2004 Dec 2;432(7017):602-5. doi: 10.1038/nature03074.
10
Characterizing large-scale quantum computers via cycle benchmarking.
Nat Commun. 2019 Nov 25;10(1):5347. doi: 10.1038/s41467-019-13068-7.

引用本文的文献

1
Quantum Stream Cipher Based on Holevo-Yuen Theory.
Entropy (Basel). 2022 May 10;24(5):667. doi: 10.3390/e24050667.

本文引用的文献

1
Exponential suppression of bit or phase errors with cyclic error correction.
Nature. 2021 Jul;595(7867):383-387. doi: 10.1038/s41586-021-03588-y. Epub 2021 Jul 14.
2
Correlated charge noise and relaxation errors in superconducting qubits.
Nature. 2021 Jun;594(7863):369-373. doi: 10.1038/s41586-021-03557-5. Epub 2021 Jun 16.
3
Removing leakage-induced correlated errors in superconducting quantum error correction.
Nat Commun. 2021 Mar 19;12(1):1761. doi: 10.1038/s41467-021-21982-y.
4
Impact of ionizing radiation on superconducting qubit coherence.
Nature. 2020 Aug;584(7822):551-556. doi: 10.1038/s41586-020-2619-8. Epub 2020 Aug 26.
5
No-Go Theorems for Quantum Resource Purification.
Phys Rev Lett. 2020 Aug 7;125(6):060405. doi: 10.1103/PhysRevLett.125.060405.
6
A review of progress in the physics of open quantum systems: theory and experiment.
Rep Prog Phys. 2015 Nov;78(11):114001. doi: 10.1088/0034-4885/78/11/114001. Epub 2015 Oct 28.
7
Sudden death of entanglement.
Science. 2009 Jan 30;323(5914):598-601. doi: 10.1126/science.1167343.
8
Non-markovian effects on the dynamics of entanglement.
Phys Rev Lett. 2007 Oct 19;99(16):160502. doi: 10.1103/PhysRevLett.99.160502. Epub 2007 Oct 17.
9
Finite-time disentanglement via spontaneous emission.
Phys Rev Lett. 2004 Oct 1;93(14):140404. doi: 10.1103/PhysRevLett.93.140404. Epub 2004 Sep 29.
10
Quantum Zeno effect.
Phys Rev A. 1990 Mar 1;41(5):2295-2300. doi: 10.1103/physreva.41.2295.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验