Suppr超能文献

具有工程应用的扩展逆冈珀茨分布的II型截尾样本下的贝叶斯和经典推断

Bayesian and Classical Inference under Type-II Censored Samples of the Extended Inverse Gompertz Distribution with Engineering Applications.

作者信息

Elshahhat Ahmed, Aljohani Hassan M, Afify Ahmed Z

机构信息

Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt.

Department of Mathematics & Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

出版信息

Entropy (Basel). 2021 Nov 26;23(12):1578. doi: 10.3390/e23121578.

Abstract

In this article, we introduce a new three-parameter distribution called the extended inverse-Gompertz (EIGo) distribution. The implementation of three parameters provides a good reconstruction for some applications. The EIGo distribution can be seen as an extension of the inverted exponential, inverse Gompertz, and generalized inverted exponential distributions. Its failure rate function has an upside-down bathtub shape. Various statistical and reliability properties of the EIGo distribution are discussed. The model parameters are estimated by the maximum-likelihood and Bayesian methods under Type-II censored samples, where the parameters are explained using gamma priors. The performance of the proposed approaches is examined using simulation results. Finally, two real-life engineering data sets are analyzed to illustrate the applicability of the EIGo distribution, showing that it provides better fits than competing inverted models such as inverse-Gompertz, inverse-Weibull, inverse-gamma, generalized inverse-Weibull, exponentiated inverted-Weibull, generalized inverted half-logistic, inverted-Kumaraswamy, inverted Nadarajah-Haghighi, and alpha-power inverse-Weibull distributions.

摘要

在本文中,我们介绍了一种新的三参数分布,称为扩展逆冈珀茨(EIGo)分布。三个参数的引入为某些应用提供了良好的重构。EIGo分布可视为倒指数分布、逆冈珀茨分布和广义倒指数分布的扩展。其失效率函数呈倒浴盆形状。讨论了EIGo分布的各种统计和可靠性特性。在II型删失样本下,通过最大似然法和贝叶斯方法估计模型参数,其中参数用伽马先验进行解释。利用模拟结果检验了所提方法的性能。最后,分析了两个实际工程数据集,以说明EIGo分布的适用性,结果表明它比诸如逆冈珀茨、逆威布尔、逆伽马、广义逆威布尔、指数化逆威布尔、广义倒半逻辑斯蒂、倒库马尔斯瓦米、倒纳达拉贾-哈格希、α-幂逆威布尔分布等竞争倒模型具有更好的拟合效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1e7/8700446/b4cf4c97997b/entropy-23-01578-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验