Suppr超能文献

基于贝叶斯风险策略的碰撞模型中的电池充电

Battery Charging in Collision Models with Bayesian Risk Strategies.

作者信息

Landi Gabriel T

机构信息

Instituto de Física, Universidade de São Paulo, São Paulo 05314-970, Brazil.

School of Physics, Trinity College Dublin, College Green, 2 Dublin, Ireland.

出版信息

Entropy (Basel). 2021 Dec 2;23(12):1627. doi: 10.3390/e23121627.

Abstract

We constructed a collision model where measurements in the system, together with a Bayesian decision rule, are used to classify the incoming ancillas as having either high or low ergotropy (maximum extractable work). The former are allowed to leave, while the latter are redirected for further processing, aimed at increasing their ergotropy further. The ancillas play the role of a quantum battery, and the collision model, therefore, implements a Maxwell demon. To make the process autonomous and with a well-defined limit cycle, the information collected by the demon is reset after each collision by means of a cold heat bath.

摘要

我们构建了一个碰撞模型,其中系统中的测量结果与贝叶斯决策规则一起用于将传入的辅助量子比特分类为具有高或低的量子熵(最大可提取功)。前者被允许离开,而后者被重新定向进行进一步处理,目的是进一步提高其量子熵。辅助量子比特起到量子电池的作用,因此,碰撞模型实现了一个麦克斯韦妖。为了使过程自主且具有明确的极限环,妖收集的信息在每次碰撞后通过冷热库进行重置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d045/8700336/0b4b346f7ff4/entropy-23-01627-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验