Campaioli Francesco, Pollock Felix A, Binder Felix C, Céleri Lucas, Goold John, Vinjanampathy Sai, Modi Kavan
School of Physics and Astronomy, Monash University, Victoria 3800, Australia.
School of Physical & Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore.
Phys Rev Lett. 2017 Apr 14;118(15):150601. doi: 10.1103/PhysRevLett.118.150601. Epub 2017 Apr 12.
Can collective quantum effects make a difference in a meaningful thermodynamic operation? Focusing on energy storage and batteries, we demonstrate that quantum mechanics can lead to an enhancement in the amount of work deposited per unit time, i.e., the charging power, when N batteries are charged collectively. We first derive analytic upper bounds for the collective quantum advantage in charging power for two choices of constraints on the charging Hamiltonian. We then demonstrate that even in the absence of quantum entanglement this advantage can be extensive. For our main result, we provide an upper bound to the achievable quantum advantage when the interaction order is restricted; i.e., at most k batteries are interacting. This constitutes a fundamental limit on the advantage offered by quantum technologies over their classical counterparts.
集体量子效应能否在有意义的热力学操作中产生影响?以能量存储和电池为例,我们证明,当对N个电池进行集体充电时,量子力学可使单位时间内存储的功(即充电功率)得到增强。我们首先针对充电哈密顿量的两种约束选择,推导出集体充电功率中集体量子优势的解析上限。然后我们证明,即使在没有量子纠缠的情况下,这种优势也可能是广泛存在的。对于我们的主要结果,当相互作用阶数受到限制(即最多k个电池相互作用)时,我们给出了可实现的量子优势的上限。这构成了量子技术相对于其经典对应技术所提供优势的一个基本限制。