Suppr超能文献

结合信号复杂性度量与机器学习进行时间序列分析:综述

Combining Measures of Signal Complexity and Machine Learning for Time Series Analyis: A Review.

作者信息

Raubitzek Sebastian, Neubauer Thomas

机构信息

Information and Software Engineering Group, Institute of Information Systems Engineering, Faculty of Informatics, TU Wien, Favoritenstrasse 9-11/194, 1040 Vienna, Austria.

出版信息

Entropy (Basel). 2021 Dec 13;23(12):1672. doi: 10.3390/e23121672.

Abstract

Measures of signal complexity, such as the , the , and the , are used in time series analysis to give estimates on persistency, anti-persistency, fluctuations and predictability of the data under study. They have proven beneficial when doing time series prediction using machine and deep learning and tell what features may be relevant for predicting time-series and establishing complexity features. Further, the performance of machine learning approaches can be improved, taking into account the complexity of the data under study, e.g., adapting the employed algorithm to the inherent long-term memory of the data. In this article, we provide a review of complexity and entropy measures in combination with machine learning approaches. We give a comprehensive review of relevant publications, suggesting the use of fractal or complexity-measure concepts to improve existing machine or deep learning approaches. Additionally, we evaluate applications of these concepts and examine if they can be helpful in predicting and analyzing time series using machine and deep learning. Finally, we give a list of a total of six ways to combine machine learning and measures of signal complexity as found in the literature.

摘要

信号复杂度的度量,如[此处缺失具体度量名称]、[此处缺失具体度量名称]和[此处缺失具体度量名称],在时间序列分析中用于对所研究数据的持续性、反持续性、波动和可预测性进行估计。在使用机器学习和深度学习进行时间序列预测时,它们已被证明是有益的,并且能指出哪些特征可能与预测时间序列和建立复杂度特征相关。此外,考虑到所研究数据的复杂度,例如使所采用的算法适应数据固有的长期记忆,机器学习方法的性能可以得到提高。在本文中,我们结合机器学习方法对复杂度和熵度量进行综述。我们对相关出版物进行全面综述,建议使用分形或复杂度度量概念来改进现有的机器学习或深度学习方法。此外,我们评估这些概念的应用,并研究它们是否有助于使用机器学习和深度学习来预测和分析时间序列。最后,我们列出了文献中发现的总共六种将机器学习与信号复杂度度量相结合的方法。

相似文献

7
Largest lyapunov-exponent estimation and selective prediction by means of simplex forecast algorithms.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Nov;62(5 Pt A):6505-15. doi: 10.1103/physreve.62.6505.

本文引用的文献

5
Stochastic Interpolation of Sparsely Sampled Time Series via Multipoint Fractional Brownian Bridges.
Phys Rev Lett. 2020 Oct 23;125(17):170602. doi: 10.1103/PhysRevLett.125.170602.
6
Machine Learning in Medicine.医学中的机器学习
N Engl J Med. 2019 Apr 4;380(14):1347-1358. doi: 10.1056/NEJMra1814259.
7
State-of-the-art in artificial neural network applications: A survey.人工神经网络应用的最新进展:一项综述。
Heliyon. 2018 Nov 23;4(11):e00938. doi: 10.1016/j.heliyon.2018.e00938. eCollection 2018 Nov.
8
Multivariate multilinear regression.
IEEE Trans Syst Man Cybern B Cybern. 2012 Dec;42(6):1560-73. doi: 10.1109/TSMCB.2012.2195171. Epub 2012 May 31.
10
Machine learning in bioinformatics.生物信息学中的机器学习。
Brief Bioinform. 2006 Mar;7(1):86-112. doi: 10.1093/bib/bbk007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验