Suppr超能文献

经股动脉经导管主动脉瓣植入术后死亡率和住院时间的预测新方法。

A Novel Method to Predict Mortality and Length of Stay after Transfemoral Transcatheter Aortic Valve Implantation.

机构信息

Department of Cardiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.

出版信息

Medicina (Kaunas). 2021 Dec 6;57(12):1332. doi: 10.3390/medicina57121332.

Abstract

: We tested if a novel combination of predictors could improve the accuracy of outcome prediction after transfemoral transcatheter aortic valve implantation (TAVI). : This prospective study recruited 169 participants (49% female; median age 81 years). The primary endpoint was midterm mortality; secondary endpoints were acute Valve Academic Research Consortium (VARC)-3 complication rate and post-TAVI in-hospital length of stay (LoS). EuroSCORE II (ESII), comorbidities (e.g., coronary artery disease), eGFR (estimated glomerular filtration rate; based on cystatin C), hemoglobin, creatinine, N-Terminal pro-Brain Natriuretic Peptide (NTproBNP) levels and patient-reported outcome measures (PROMs, namely EuroQol-5-Dimension-5-Levels, EQ5D5L; Kansas City Cardiomyopathy Questionnaire, KCCQ; clinical frailty scale, CFS) at baseline were tested as predictors. Regression (uni- and multi-variate Cox; linear; binary logistic) and receiver operating characteristic (ROC)-curve analysis were applied. : Within a median follow-up of 439 (318-585) days, 12 participants died (7.1%). Independent predictors of mortality using multivariate Cox regression were baseline eGFR ( = 0.001) and KCCQ ( = 0.037). Based on these predictors, a Linear Prediction Score (LPS1) was calculated. The LPS1-area under the curve (AUC)-value (0.761) was significantly higher than the ESII-AUC value (0.597; = 0.035). Independent predictors for LoS > 6 days (the median LoS) were eGFR ( = 0.028), NTproBNP ( = 0.034), and EQ5D5L values ( = 0.002); a respective calculated LPS2 provided an AUC value of 0.677 ( < 0.001). Eighty participants (47.3%) experienced complications. Male sex predicted complications only in the univariate analysis. : The combination of KCCQ and eGFR can better predict midterm mortality than ES II alone. Combining eGFR, NTproBNP, and EQ5D5L can reliably predict LoS after TAVI. This novel method improves personalized TAVI risk stratification and hence may help reduce post-TAVI risk.

摘要

我们测试了一种新的预测因子组合是否可以提高经股动脉经导管主动脉瓣置换术(TAVI)后结局预测的准确性。这项前瞻性研究招募了 169 名参与者(49%为女性;中位年龄 81 岁)。主要终点是中期死亡率;次要终点是急性瓣膜学术研究联盟(VARC)-3 并发症发生率和 TAVI 后住院期间的住院时间(LoS)。欧洲心脏手术风险评估系统 II(ESII)、合并症(如冠状动脉疾病)、估算肾小球滤过率(基于胱抑素 C)、血红蛋白、肌酐、N-末端脑利钠肽前体(NTproBNP)水平和患者报告的结局测量(PROM,即欧洲五维健康量表-5 水平,EQ5D5L;堪萨斯城心肌病问卷,KCCQ;临床虚弱量表,CFS)在基线时作为预测因子进行了测试。应用回归(单变量和多变量 Cox;线性;二项逻辑)和接收器工作特征(ROC)曲线分析。在中位随访 439(318-585)天内,有 12 名参与者死亡(7.1%)。多变量 Cox 回归的独立死亡预测因子是基线 eGFR( = 0.001)和 KCCQ( = 0.037)。基于这些预测因子,计算了线性预测评分(LPS1)。LPS1 的曲线下面积(AUC)值(0.761)明显高于 ESII-AUC 值(0.597; = 0.035)。LoS>6 天(LoS 的中位数)的独立预测因子为 eGFR( = 0.028)、NTproBNP( = 0.034)和 EQ5D5L 值( = 0.002);计算出的 LPS2 提供了 AUC 值 0.677(<0.001)。80 名参与者(47.3%)发生并发症。男性仅在单变量分析中预测并发症。KCCQ 和 eGFR 的组合可以比 ES II 单独更好地预测中期死亡率。将 eGFR、NTproBNP 和 EQ5D5L 结合起来可以可靠地预测 TAVI 后的 LOS。这种新方法可以改善经导管主动脉瓣置换术的个体化风险分层,从而可能有助于降低经导管主动脉瓣置换术后的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验