Elsmani Mohammed Islam, Fatima Noshin, Jallorina Michael Paul A, Sepeai Suhaila, Su'ait Mohd Sukor, Ahmad Ludin Norasikin, Mat Teridi Mohd Asri, Sopian Kamaruzzaman, Ibrahim Mohd Adib
Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.
Information Device Science Laboratory, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan.
Nanomaterials (Basel). 2021 Nov 24;11(12):3186. doi: 10.3390/nano11123186.
The unprecedented development of perovskite-silicon (PSC-Si) tandem solar cells in the last five years has been hindered by several challenges towards industrialization, which require further research. The combination of the low cost of perovskite and legacy silicon solar cells serve as primary drivers for PSC-Si tandem solar cell improvement. For the perovskite top-cell, the utmost concern reported in the literature is perovskite instability. Hence, proposed physical loss mechanisms for intrinsic and extrinsic instability as triggering mechanisms for hysteresis, ion segregation, and trap states, along with the latest proposed mitigation strategies in terms of stability engineering, are discussed. The silicon bottom cell, being a mature technology, is currently facing bottleneck challenges to achieve power conversion efficiencies (PCE) greater than 26.7%, which requires more understanding in the context of light management and passivation technologies. Finally, for large-scale industrialization of the PSC-Si tandem solar cell, the promising silicon wafer thinning, and large-scale film deposition technologies could cause a shift and align with a more affordable and flexible roll-to-roll PSC-Si technology. Therefore, this review aims to provide deliberate guidance on critical fundamental issues and configuration factors in current PSC-Si tandem technologies towards large-scale industrialization. to meet the 2031 PSC-Si Tandem road maps market target.
在过去五年中,钙钛矿-硅(PSC-Si)串联太阳能电池的空前发展受到了工业化面临的诸多挑战的阻碍,这些挑战需要进一步研究。钙钛矿的低成本与传统硅太阳能电池的结合是推动PSC-Si串联太阳能电池改进的主要因素。对于钙钛矿顶电池,文献中报道的最主要问题是钙钛矿的不稳定性。因此,本文讨论了作为滞后、离子偏析和陷阱态触发机制的本征和非本征不稳定性的物理损耗机制,以及在稳定性工程方面最新提出的缓解策略。硅底电池作为一项成熟技术,目前在实现大于26.7%的功率转换效率(PCE)方面面临瓶颈挑战,这需要在光管理和钝化技术方面有更多的了解。最后,对于PSC-Si串联太阳能电池的大规模工业化,有前景的硅片减薄和大规模薄膜沉积技术可能会导致转变,并与更经济实惠且灵活的卷对卷PSC-Si技术保持一致。因此,本综述旨在为当前PSC-Si串联技术中迈向大规模工业化的关键基础问题和配置因素提供审慎指导,以实现2031年PSC-Si串联路线图的市场目标。