Suppr超能文献

克服纳米级金属与硅界面的费米能级钉扎效应。

Overcoming the Fermi-Level Pinning Effect in the Nanoscale Metal and Silicon Interface.

作者信息

Su Zih-Chun, Lin Ching-Fuh

机构信息

Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.

Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan.

出版信息

Nanomaterials (Basel). 2023 Jul 28;13(15):2193. doi: 10.3390/nano13152193.

Abstract

Silicon-based photodetectors are attractive as low-cost and environmentally friendly optical sensors. Also, their compatibility with complementary metal-oxide-semiconductor (CMOS) technology is advantageous for the development of silicon photonics systems. However, extending optical responsivity of silicon-based photodetectors to the mid-infrared (mid-IR) wavelength range remains challenging. In developing mid-IR infrared Schottky detectors, nanoscale metals are critical. Nonetheless, one key factor is the Fermi-level pinning effect at the metal/silicon interface and the presence of metal-induced gap states (MIGS). Here, we demonstrate the utilization of the passivated surface layer on semiconductor materials as an insulating material in metal-insulator-semiconductor (MIS) contacts to mitigate the Fermi-level pinning effect. The removal of Fermi-level pinning effectively reduces the Schottky barrier height by 12.5% to 16%. The demonstrated devices exhibit a high responsivity of up to 234 μA/W at a wavelength of 2 μm, 48.2 μA/W at 3 μm, and 1.75 μA/W at 6 μm. The corresponding detectivities at 2 and 3 μm are 1.17 × 10 cm Hz W and 2.41 × 10 cm Hz W, respectively. The expanded sensing wavelength range contributes to the application development of future silicon photonics integration platforms.

摘要

硅基光电探测器作为低成本且环保的光学传感器颇具吸引力。此外,它们与互补金属氧化物半导体(CMOS)技术的兼容性有利于硅光子系统的发展。然而,将硅基光电探测器的光学响应扩展到中红外(mid-IR)波长范围仍然具有挑战性。在开发中红外肖特基探测器时,纳米级金属至关重要。尽管如此,一个关键因素是金属/硅界面处的费米能级钉扎效应以及金属诱导能隙态(MIGS)的存在。在此,我们展示了利用半导体材料上的钝化表面层作为金属-绝缘体-半导体(MIS)接触中的绝缘材料来减轻费米能级钉扎效应。费米能级钉扎的消除有效地将肖特基势垒高度降低了12.5%至16%。所展示的器件在波长为2μm时具有高达234μA/W的高响应度,在3μm时为48.2μA/W,在6μm时为1.75μA/W。在2μm和3μm处的相应探测率分别为1.17×10 cm Hz W和2.41×10 cm Hz W。扩展的传感波长范围有助于未来硅光子集成平台的应用开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eac9/10420943/397c89f3480a/nanomaterials-13-02193-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验