Suppr超能文献

用于先进柔性锂离子电池的同轴静电纺丝构建Si@C核壳纳米纤维

Coaxial Electrospinning Construction Si@C Core-Shell Nanofibers for Advanced Flexible Lithium-Ion Batteries.

作者信息

Zeng Li, Xi Hongxue, Liu Xingang, Zhang Chuhong

机构信息

State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China.

出版信息

Nanomaterials (Basel). 2021 Dec 20;11(12):3454. doi: 10.3390/nano11123454.

Abstract

Silicon (Si) is expected to be a high-energy anode for the next generation of lithium-ion batteries (LIBs). However, the large volume change along with the severe capacity degradation during the cycling process is still a barrier for its practical application. Herein, we successfully construct flexible silicon/carbon nanofibers with a core-shell structure via a facile coaxial electrospinning technique. The resultant Si@C nanofibers (Si@C NFs) are composed of a hard carbon shell and the Si-embedded amorphous carbon core framework demonstrates an initial reversible capacity of 1162.8 mAh g at 0.1 A g with a retained capacity of 762.0 mAh g after 100 cycles. In addition, flexible LIBs assembled with Si@C NFs were hardly impacted under an extreme bending state, illustrating excellent electrochemical performance. The impressive performances are attributed to the high electric conductivity and structural stability of the porous carbon fibers with a hierarchical porous structure, indicating that the novel Si@C NFs fabricated using this electrospinning technique have great potential for advanced flexible energy storage.

摘要

硅(Si)有望成为下一代锂离子电池(LIBs)的高能阳极。然而,在循环过程中伴随的大体积变化以及严重的容量衰减仍然是其实际应用的障碍。在此,我们通过一种简便的同轴静电纺丝技术成功构建了具有核壳结构的柔性硅/碳纳米纤维。所得的Si@C纳米纤维(Si@C NFs)由硬碳壳组成,嵌入硅的非晶碳核心框架在0.1 A g下展现出1162.8 mAh g的初始可逆容量,在100次循环后保留容量为762.0 mAh g。此外,用Si@C NFs组装的柔性LIBs在极端弯曲状态下几乎不受影响,显示出优异的电化学性能。这些令人印象深刻的性能归因于具有分级多孔结构的多孔碳纤维的高电导率和结构稳定性,表明使用这种静电纺丝技术制备的新型Si@C NFs在先进的柔性储能方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bde2/8709299/b67eb129a5b5/nanomaterials-11-03454-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验