Suppr超能文献

一种用于图像去模糊的迭代技术设计新框架。

A New Framework of Designing Iterative Techniques for Image Deblurring.

作者信息

Zhang Min, Young Geoffrey S, Tie Yanmei, Gu Xianfeng, Xu Xiaoyin

机构信息

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Pattern Recognit. 2022 Apr;124. doi: 10.1016/j.patcog.2021.108463. Epub 2021 Nov 27.

Abstract

In this work we present a framework of designing iterative techniques for image deblurring in inverse problem. The new framework is based on two observations about existing methods. We used Landweber method as the basis to develop and present the new framework but note that the framework is applicable to other iterative techniques. First, we observed that the iterative steps of Landweber method consist of a constant term, which is a low-pass filtered version of the already blurry observation. We proposed a modification to use the observed image directly. Second, we observed that Landweber method uses an estimate of the true image as the starting point. This estimate, however, does not get updated over iterations. We proposed a modification that updates this estimate as the iterative process progresses. We integrated the two modifications into one framework of iteratively deblurring images. Finally, we tested the new method and compared its performance with several existing techniques, including Landweber method, Van Cittert method, GMRES (generalized minimal residual method), and LSQR (least square), to demonstrate its superior performance in image deblurring.

摘要

在这项工作中,我们提出了一种用于逆问题中图像去模糊的迭代技术设计框架。新框架基于对现有方法的两点观察。我们以Landweber方法为基础来开发和展示新框架,但请注意该框架适用于其他迭代技术。首先,我们观察到Landweber方法的迭代步骤包含一个常数项,它是已模糊观测值的低通滤波版本。我们提出了一种修改方法,直接使用观测图像。其次,我们观察到Landweber方法使用真实图像的估计值作为起始点。然而,这个估计值在迭代过程中不会更新。我们提出了一种修改方法,随着迭代过程的推进更新这个估计值。我们将这两种修改整合到一个图像迭代去模糊的框架中。最后,我们测试了新方法,并将其性能与几种现有技术进行比较,包括Landweber方法、Van Cittert方法、GMRES(广义极小残差法)和LSQR(最小二乘法),以证明其在图像去模糊方面的优越性能。

相似文献

6
9
Image Deblurring with a Class-Specific Prior.基于类别先验的图像去模糊。
IEEE Trans Pattern Anal Mach Intell. 2019 Sep;41(9):2112-2130. doi: 10.1109/TPAMI.2018.2855177. Epub 2018 Jul 11.

本文引用的文献

1
Momentum-Net: Fast and Convergent Iterative Neural Network for Inverse Problems.动量网络:用于反问题的快速收敛迭代神经网络。
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4915-4931. doi: 10.1109/TPAMI.2020.3012955. Epub 2023 Mar 10.
2
A unified weighted minimum norm solution for the reference inverse problem in EEG.脑电参考逆问题的统一加权最小范数解。
Comput Biol Med. 2019 Dec;115:103510. doi: 10.1016/j.compbiomed.2019.103510. Epub 2019 Oct 16.
3
Inertial Nonconvex Alternating Minimizations for the Image Deblurring.惯性非凸交替最小化在图像去模糊中的应用。
IEEE Trans Image Process. 2019 Dec;28(12):6211-6224. doi: 10.1109/TIP.2019.2924339. Epub 2019 Jun 27.
4
On the Convergence of Learning-Based Iterative Methods for Nonconvex Inverse Problems.基于学习的非凸逆问题迭代方法的收敛性
IEEE Trans Pattern Anal Mach Intell. 2020 Dec;42(12):3027-3039. doi: 10.1109/TPAMI.2019.2920591. Epub 2020 Nov 3.
6
Image Restoration by Iterative Denoising and Backward Projections.迭代去噪和反向投影的图像恢复。
IEEE Trans Image Process. 2019 Mar;28(3):1220-1234. doi: 10.1109/TIP.2018.2875569. Epub 2018 Oct 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验