Ru Beibei, Jiang Peng
Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Patterns (N Y). 2021 Dec 10;2(12):100384. doi: 10.1016/j.patter.2021.100384.
Currently, identifying novel biomarkers remains a crucial need for cancer immunotherapy. By leveraging single-cell cytometry data, Greene et al. developed an interpretable machine learning method, FAUST, to discover cell populations associated with clinical outcomes.
目前,识别新型生物标志物仍然是癌症免疫治疗的迫切需求。通过利用单细胞流式细胞术数据,格林等人开发了一种可解释的机器学习方法FAUST,以发现与临床结果相关的细胞群体。