Suppr超能文献

基于肿瘤转录组的合成致死性介导精准肿瘤学。

Synthetic lethality-mediated precision oncology via the tumor transcriptome.

机构信息

Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Next Generation Medicine Lab, Department of Artificial Intelligence & Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Digital Health & Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea.

Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Cell. 2021 Apr 29;184(9):2487-2502.e13. doi: 10.1016/j.cell.2021.03.030. Epub 2021 Apr 14.

Abstract

Precision oncology has made significant advances, mainly by targeting actionable mutations in cancer driver genes. Aiming to expand treatment opportunities, recent studies have begun to explore the utility of tumor transcriptome to guide patient treatment. Here, we introduce SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a precision oncology framework harnessing genetic interactions to predict patient response to cancer therapy from the tumor transcriptome. SELECT is tested on a broad collection of 35 published targeted and immunotherapy clinical trials from 10 different cancer types. It is predictive of patients' response in 80% of these clinical trials and in the recent multi-arm WINTHER trial. The predictive signatures and the code are made publicly available for academic use, laying a basis for future prospective clinical studies.

摘要

精准肿瘤学取得了重大进展,主要通过针对癌症驱动基因中的可操作突变。为了扩大治疗机会,最近的研究开始探索利用肿瘤转录组来指导患者治疗。在这里,我们介绍 SELECT(通过转录组利用合成致死和拯救介导的精准肿瘤学),这是一种利用遗传相互作用的精准肿瘤学框架,可从肿瘤转录组预测癌症治疗患者的反应。SELECT 在来自 10 种不同癌症类型的 35 个已发表的靶向和免疫治疗临床试验的广泛收集上进行了测试。它可以预测这些临床试验中有 80%的患者的反应,并且在最近的多臂 WINTHER 试验中也是如此。预测特征和代码都可供学术使用,为未来的前瞻性临床研究奠定了基础。

相似文献

1
Synthetic lethality-mediated precision oncology via the tumor transcriptome.
Cell. 2021 Apr 29;184(9):2487-2502.e13. doi: 10.1016/j.cell.2021.03.030. Epub 2021 Apr 14.
2
Aurora kinase A, a synthetic lethal target for precision cancer medicine.
Exp Mol Med. 2021 May;53(5):835-847. doi: 10.1038/s12276-021-00635-6. Epub 2021 May 28.
3
Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma.
J Hematol Oncol. 2020 Oct 2;13(1):130. doi: 10.1186/s13045-020-00958-3.
4
Transcriptomics and solid tumors: The next frontier in precision cancer medicine.
Semin Cancer Biol. 2022 Sep;84:50-59. doi: 10.1016/j.semcancer.2020.09.007. Epub 2020 Sep 17.
5
A systematic analysis of the landscape of synthetic lethality-driven precision oncology.
Med. 2024 Jan 12;5(1):73-89.e9. doi: 10.1016/j.medj.2023.12.009.
6
Transcriptomic-Based Microenvironment Classification Reveals Precision Medicine Strategies for Pancreatic Ductal Adenocarcinoma.
Gastroenterology. 2024 May;166(5):859-871.e3. doi: 10.1053/j.gastro.2024.01.028. Epub 2024 Jan 25.
7
Gene Signatures and Oncology Treatment Implications.
Hematol Oncol Clin North Am. 2025 Apr;39(2):295-307. doi: 10.1016/j.hoc.2024.11.003. Epub 2024 Dec 17.
8
9
Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome.
Med. 2023 Jan 13;4(1):15-30.e8. doi: 10.1016/j.medj.2022.11.001. Epub 2022 Dec 12.
10
The Pros and Cons of Incorporating Transcriptomics in the Age of Precision Oncology.
J Natl Cancer Inst. 2019 Oct 1;111(10):1016-1022. doi: 10.1093/jnci/djz114.

引用本文的文献

1
Redefining druggable targets with artificial intelligence.
Nat Biotechnol. 2025 Aug 19. doi: 10.1038/s41587-025-02770-1.
5
Advances in molecular pathology and therapy of non-small cell lung cancer.
Signal Transduct Target Ther. 2025 Jun 15;10(1):186. doi: 10.1038/s41392-025-02243-6.
8
Werner helicase as a therapeutic target in mismatch repair deficient colorectal cancer.
DNA Repair (Amst). 2025 May;149:103831. doi: 10.1016/j.dnarep.2025.103831. Epub 2025 Apr 3.
9
Pan-cancer analysis shapes the understanding of cancer biology and medicine.
Cancer Commun (Lond). 2025 Jul;45(7):728-746. doi: 10.1002/cac2.70008. Epub 2025 Mar 22.
10
Advancements in proteogenomics for preclinical targeted cancer therapy research.
Biophys Rep. 2025 Feb 28;11(1):56-76. doi: 10.52601/bpr.2024.240053.

本文引用的文献

1
Pan-cancer analysis of advanced patient tumors reveals interactions between therapy and genomic landscapes.
Nat Cancer. 2020 Apr;1(4):452-468. doi: 10.1038/s43018-020-0050-6. Epub 2020 Apr 13.
3
Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer.
Nat Med. 2020 Nov;26(11):1742-1753. doi: 10.1038/s41591-020-1072-4. Epub 2020 Oct 5.
8
Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma.
Nat Med. 2019 Dec;25(12):1916-1927. doi: 10.1038/s41591-019-0654-5. Epub 2019 Dec 2.
9
Translational reprogramming marks adaptation to asparagine restriction in cancer.
Nat Cell Biol. 2019 Dec;21(12):1590-1603. doi: 10.1038/s41556-019-0415-1. Epub 2019 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验