Suppr超能文献

心力衰竭患者在 COVID-19 大流行前后的预期和观察到的院内死亡率:引入基于机器学习的 Helios 医院标准化死亡率比。

Expected and observed in-hospital mortality in heart failure patients before and during the COVID-19 pandemic: Introduction of the machine learning-based standardized mortality ratio at Helios hospitals.

机构信息

Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany.

Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany.

出版信息

Clin Cardiol. 2022 Jan;45(1):75-82. doi: 10.1002/clc.23762. Epub 2021 Dec 23.

Abstract

BACKGROUND

Reduced hospital admission rates for heart failure (HF) and evidence of increased in-hospital mortality were reported during the COVID-19 pandemic. The aim of this study was to apply a machine learning (ML)-based mortality prediction model to examine whether the latter is attributable to differing case mixes and exceeds expected mortality rates.

METHODS AND RESULTS

Inpatient cases with a primary discharge diagnosis of HF non-electively admitted to 86 German Helios hospitals between 01/01/2016 and 08/31/2020 were identified. Patients with proven or suspected SARS-CoV-2 infection were excluded. ML-based models were developed, tuned, and tested using cases of 2016-2018 (n = 64,440; randomly split 75%/25%). Extreme gradient boosting showed the best model performance indicated by a receiver operating characteristic area under the curve of 0.882 (95% confidence interval [CI]: 0.872-0.893). The model was applied on data sets of 2019 and 2020 (n = 28,556 cases) and the hospital standardized mortality ratio (HSMR) was computed as the observed to expected death ratio. Observed mortality rates were 5.84% (2019) and 6.21% (2020), HSMRs based on an individual case-based mortality probability were 100.0 (95% CI: 93.3-107.2; p = 1.000) for 2019 and 99.3 (95% CI: 92.5-106.4; p = .850) for 2020. Within subgroups of age or hospital volume, there were no significant differences between observed and expected deaths. When stratified for pandemic phases, no excess death during the COVID-19 pandemic was observed.

CONCLUSION

Applying an ML algorithm to calculate expected inpatient mortality based on administrative data, there was no excess death above expected event rates in HF patients during the COVID-19 pandemic.

摘要

背景

在 COVID-19 大流行期间,心力衰竭(HF)的住院率降低,并出现住院死亡率增加的证据。本研究的目的是应用基于机器学习(ML)的死亡率预测模型,检验后者是否归因于不同的病例组合并超过预期死亡率。

方法和结果

确定了 2016 年 1 月 1 日至 2020 年 8 月 31 日期间在 86 家德国 Helios 医院非选择性收治的因 HF 而首次就诊的住院患者。排除了已确诊或疑似 SARS-CoV-2 感染的患者。使用 2016-2018 年的病例(n=64440;随机分为 75%/25%)开发、调整和测试基于 ML 的模型。极端梯度增强显示出最佳的模型性能,其接收者操作特征曲线下面积为 0.882(95%置信区间[CI]:0.872-0.893)。该模型应用于 2019 年和 2020 年的数据组(n=28556 例),并计算了医院标准化死亡率(HSMR)作为观察到的与预期死亡的比值。观察到的死亡率分别为 5.84%(2019 年)和 6.21%(2020 年),基于个体病例死亡率概率的 HSMR 分别为 100.0(95%CI:93.3-107.2;p=1.000)和 99.3(95%CI:92.5-106.4;p=.850)(2019 年)和 99.3(95%CI:92.5-106.4;p=.850)(2020 年)。在年龄或医院容量的亚组中,观察到的死亡与预期的死亡之间没有显著差异。当按大流行阶段分层时,在 COVID-19 大流行期间没有观察到超额死亡。

结论

应用 ML 算法根据管理数据计算住院患者的预期死亡率,在 COVID-19 大流行期间,HF 患者的死亡人数未超过预期发生率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4648/8799043/1b645627549f/CLC-45-75-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验