Jiang Hongzhu, Han Xiaoqi, Du Xiaofan, Chen Zheng, Lu Chenglong, Li Xintong, Zhang Huanrui, Zhao Jingwen, Han Pengxian, Cui Guanglei
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Mater. 2022 Mar;34(9):e2108665. doi: 10.1002/adma.202108665. Epub 2022 Jan 23.
Graphitic carbon that allows reversible anion (de)intercalation is a promising cathode material for cost-efficient and high-voltage dual-ion batteries (DIBs). However, one notorious but overlooked issue is the incomplete interfacial anion desolvation, which not only reduces the oxidative stability of electrolytes, but also results in solvent co-intercalation into graphite layers. Here, an "anion-permselective" polymer electrolyte with abundant cationic quaternary ammonium motif is developed to weaken the PF -solvent interaction and thus facilitates PF desolvation. This strategy significantly inhibits solvent co-intercalation as well as enhances the oxidation resistance of electrolyte, ensuring the structural integrity of graphite. As a result, the as-assembled graphite||Li cell achieves a superior cyclability with an average Coulombic efficiency of 99.0% (vs 95.7% for baseline electrolyte) and 87.1% capacity retention after 2000 cycles even at a high cutoff potential of 5.4 V versus Li /Li. Besides, this polymer also forms a robust cathode electrolyte interface, working together to enable a long-life DIB. This strategy of tuning anion coordination environment provides a promising solution to regulate solvent co-intercalation chemistry for DIBs.
能够实现可逆阴离子(脱)嵌入的石墨碳是一种很有前景的阴极材料,可用于具有成本效益的高压双离子电池(DIBs)。然而,一个臭名昭著但被忽视的问题是界面阴离子去溶剂化不完全,这不仅会降低电解质的氧化稳定性,还会导致溶剂共嵌入石墨层。在此,开发了一种具有丰富阳离子季铵基序的“阴离子选择性透过”聚合物电解质,以削弱PF-溶剂相互作用,从而促进PF去溶剂化。该策略显著抑制了溶剂共嵌入,并提高了电解质的抗氧化性,确保了石墨的结构完整性。结果,组装好的石墨||Li电池实现了优异的循环稳定性,平均库仑效率为99.0%(相对于基线电解质的95.7%),即使在相对于Li/Li为5.4 V的高截止电位下,经过2000次循环后容量保持率仍为87.1%。此外,这种聚合物还形成了坚固的阴极电解质界面,共同作用实现了长寿命的双离子电池。这种调节阴离子配位环境的策略为调控双离子电池的溶剂共嵌入化学提供了一个有前景的解决方案。