Suppr超能文献

用于改善高性能双离子电池中阴极电解质界面的策略。

Strategies for improving cathode electrolyte interphase in high-performance dual-ion batteries.

作者信息

He Yitao, Chen Zhipeng, Zhang Yaohui

机构信息

Department of New Energy Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan, Anhui, China.

Department of Thin Films and Nanostructures, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague 6, Czech Republic.

出版信息

iScience. 2024 Jul 11;27(8):110491. doi: 10.1016/j.isci.2024.110491. eCollection 2024 Aug 16.

Abstract

Dual-ion batteries (DIBs) offer high energy density due to the ability to intercalate both anions and cations, thereby increasing the cutoff voltage and battery capacity. Graphite, with its ordered layered structure and cost-effectiveness, is commonly employed as the cathode material for DIBs. However, the discharge capacity of graphite cathodes is relatively low, and their cycling stability is poor, limiting the practical applications of DIBs. The formation of cathode electrolyte interphase (CEI) on the graphite cathode surface is closely related to anion behavior. Constructing a stable cathode electrolyte interface is crucial for improving the stability of anion storage. Therefore, we introduce a series of strategies to enhance the quality of the CEI layer, including additives, binders, main salts or solvents, high-concentration electrolytes, doping elements, artificial CEI, and graphite surface modifications. These strategies improve the CEI by enhancing anion transport rates, increasing anion solvation capabilities, and improving the structural stability of graphite cathodes, which is of profound significance for increasing the capacity and stability of DIBs. This review provides inspiration for future CEI research, encouraging further exploration of resources of CEI components and improvement strategies to further promote the development of DIBs technology.

摘要

双离子电池(DIBs)由于能够同时嵌入阴离子和阳离子,从而提高截止电压和电池容量,因此具有高能量密度。石墨具有有序的层状结构且成本效益高,通常被用作DIBs的阴极材料。然而,石墨阴极的放电容量相对较低,其循环稳定性较差,限制了DIBs的实际应用。石墨阴极表面阴极电解质界面(CEI)的形成与阴离子行为密切相关。构建稳定的阴极电解质界面对于提高阴离子存储的稳定性至关重要。因此,我们引入了一系列提高CEI层质量的策略,包括添加剂、粘结剂、主盐或溶剂、高浓度电解质、掺杂元素、人工CEI和石墨表面改性。这些策略通过提高阴离子传输速率、增加阴离子溶剂化能力以及改善石墨阴极的结构稳定性来改善CEI,这对于提高DIBs的容量和稳定性具有深远意义。本综述为未来CEI研究提供了灵感,鼓励进一步探索CEI组分的资源和改进策略,以进一步推动DIBs技术的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7223/11338147/5689eef56c22/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验