Suppr超能文献

AMC:从单细胞DNA测序数据中进行准确的突变聚类

AMC: accurate mutation clustering from single-cell DNA sequencing data.

作者信息

Yu Zhenhua, Du Fang

机构信息

School of Information Engineering, Ningxia University, Yinchuan 750021, China.

Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Ningxia University, Yinchuan 750021, China.

出版信息

Bioinformatics. 2022 Mar 4;38(6):1732-1734. doi: 10.1093/bioinformatics/btab857.

Abstract

SUMMARY

Single-cell DNA sequencing (scDNA-seq) now enables high-resolution profiles of intra-tumor heterogeneity. Existing methods for phylogenetic inference from scDNA-seq data perform acceptably well on small datasets but suffer from low computational efficiency and/or degraded accuracy on large datasets. Motivated by the fact that mutations sharing common states over single cells can be grouped together, we introduce a new software called AMC (accurate mutation clustering) to accurately cluster mutations, thus improve the efficiency of phylogenetic inference. AMC first employs principal component analysis followed by K-means clustering to find mutation clusters, then infers the maximum likelihood estimates of the genotypes of each cluster. The inferred genotypes can subsequently be used to reconstruct the phylogenetic tree with high efficiency. Comprehensive evaluations on various simulated datasets demonstrate AMC is particularly useful to efficiently reason the mutation clusters on large scDNA-seq datasets.

AVAILABILITY AND IMPLEMENTATION

AMC is freely available at https://github.com/qasimyu/amc.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

单细胞DNA测序(scDNA-seq)现在能够实现肿瘤内异质性的高分辨率图谱。现有的从scDNA-seq数据进行系统发育推断的方法在小数据集上表现尚可,但在大数据集上存在计算效率低和/或准确性下降的问题。鉴于在单个细胞中具有共同状态的突变可以被归为一组这一事实,我们引入了一种名为AMC(精确突变聚类)的新软件来精确聚类突变,从而提高系统发育推断的效率。AMC首先采用主成分分析,然后进行K均值聚类以找到突变簇,接着推断每个簇的基因型的最大似然估计。推断出的基因型随后可用于高效重建系统发育树。对各种模拟数据集的综合评估表明,AMC对于在大型scDNA-seq数据集上有效推断突变簇特别有用。

可用性和实现方式

AMC可在https://github.com/qasimyu/amc上免费获取。

补充信息

补充数据可在《生物信息学》在线版获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验