Suppr超能文献

载 MXene 的噬菌体:一种控制水中细菌污染的新型抗菌候选物。

MXene-laden bacteriophage: A new antibacterial candidate to control bacterial contamination in water.

机构信息

CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.

Center for Microbes, Development, and Health (CMDH), Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200025, China.

出版信息

Chemosphere. 2022 Mar;290:133383. doi: 10.1016/j.chemosphere.2021.133383. Epub 2021 Dec 21.

Abstract

In this study, TiC MXene nanofragments with a size distribution of about 20 nm were laden on the well-characterized bacteriophages via electrostatic bonding, introducing a new antibacterial agent as a modified virus vector to be used in high-risk bacterial environment. At > MIC of MXene, the MXene-functionalized bacteriophage would be much more active in attacking the bacteria because of the high specificity for host receptors' recognition and targeting ability of bacteriophage and bacterial surface negative charge when comparing to the phage alone. Also, the induced positive surface moieties drive MXene nanofragments toward the negative surface charge of bacteria. The main mechanisms are the specific targeting capacity of bacteriophages, often by lysing the host and bursting out, and the physical interaction of MXene nanofragments with the bacterial cell membrane, which may rupture the cell wall in microbial death. The results described that the TiC MXene significantly enhanced the bacteriophage adsorption rate and stability over long-standing cultivation in aquatic environments providing superior antibacterial efficacy against the bacterial cells target. The TiC MXene-laden bacteriophage demonstrated a fast, efficient attaching to bacterial host cells, high antibacterial potential, and reduced 99.99% of the artificial contamination in water samples. Interestingly, no re-growth of target bacteria was observed in the samples during the experiment period, and the count of bacteria constantly remained below the detection threshold. This research raises attention in proposing a novel antibacterial agent to be synthesized through a simple one-step technique devoid of shortcomings of post-treatments in conventional antibacterial treatments.

摘要

在这项研究中,尺寸分布约为 20nm 的 TiC MXene 纳米片段通过静电键合负载在经过充分表征的噬菌体上,引入了一种新的抗菌剂作为改良的病毒载体,用于高风险细菌环境。在 MXene 的 MIC 以上,由于噬菌体对宿主受体的识别具有高度特异性和噬菌体与细菌表面负电荷的靶向能力,与单独的噬菌体相比,负载 MXene 的噬菌体在攻击细菌时会更加活跃。此外,诱导的正表面基团使 MXene 纳米片段朝向细菌的负表面电荷。主要机制是噬菌体的特定靶向能力,通常通过裂解宿主并爆发,以及 MXene 纳米片段与细菌细胞膜的物理相互作用,这可能导致细胞壁在微生物死亡时破裂。结果表明,TiC MXene 显著提高了噬菌体在水生环境中长期培养下的吸附率和稳定性,对目标细菌细胞具有优异的抗菌效果。负载 TiC MXene 的噬菌体表现出快速、高效地附着于细菌宿主细胞的能力,具有高抗菌潜力,并将水样中的人工污染减少了 99.99%。有趣的是,在实验期间,样品中未观察到目标细菌的再生长,细菌数量始终保持在检测阈值以下。这项研究提出了一种新型抗菌剂,通过简单的一步合成技术来合成,避免了传统抗菌处理中后处理的缺点,引起了人们的关注。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验