Suppr超能文献

异常反应模式检查可改善蒙哥马利-艾斯伯格抑郁评定量表(MADRS)的测量。

Outlier-response pattern checks to improve measurement with the Montgomery-Asberg depression rating scale (MADRS).

机构信息

Bar Ilan University, Ramat Gan, Israel.

Bar Ilan University, Ramat Gan, Israel.

出版信息

J Affect Disord. 2022 Feb 15;299:444-448. doi: 10.1016/j.jad.2021.12.076. Epub 2021 Dec 21.

Abstract

Symptom manifestations in affective disorders can be subtle. Small imprecisions in measurement can lead to incorrect estimation of change. Previously, expert-derived scoring inconsistency flags were developed for MADRS. Currently, we derive empirically based outlier-pattern flags, to further detect imprecisions in ratings. NEWMEDS data repository of almost 25,000 MADRS administrations from 11 registration trials of antidepressants was used to identify outlier response patterns reflecting potentially careless responses. Coverage of these flags was compared to previously published expert derived flags. Both sets of flags were also further tested in Monte Carlo simulated data as a proxy to applying flags under conditions of known inconsistency. The outlier flags derived provide cutting points to identify: (1) under and overuse of values (e.g., Scoring "1″ on 6 or more items), (2) disproportionate use of even or odd response choices (e.g., 8 or more odd values), (3) longest consecutive use of value (e.g., more than 5 items in a row scored with same value), (4) high variability within administration (standard deviation greater than 1.8), (5) outlier responses on multiple items (i.e., multivariate outliers), and (6) outlier scoring (e.g., scoring 4,5 or 6 on item 1). Outlier response flags were raised in 26% of the MADRS administration and in 97% of the Monte Carlo data. Of administrations with no expert flag, 21.7% had an outlier flag and of administrations with at least one expert flag, 27.7% also had an outlier flag. Outlier-pattern flags appear to be a useful adjunct to expert derived flags in the quest to improve measurement in clinical trials.

摘要

情感障碍的症状表现可能较为微妙。测量中的微小不精确可能导致对变化的错误估计。此前,已经为 MADRS 开发了由专家得出的评分不一致标志。目前,我们基于实证得出异常值模式标志,以进一步检测评分中的不精确性。利用来自 11 项抗抑郁药注册试验的近 25,000 次 MADRS 管理的 NEWMEDS 数据存储库,确定了反映潜在草率反应的异常反应模式。比较了这些标志的覆盖范围与之前发表的专家得出的标志。还在蒙特卡罗模拟数据中进一步测试了这两套标志,作为在已知不一致条件下应用标志的代理。得出的异常值标志提供了识别以下情况的切点:(1) 值的过度和不足使用(例如,在 6 个或更多项目上评分为“1”),(2) 甚至奇数反应选择的不成比例使用(例如,8 个或更多奇数值),(3) 最长连续使用值(例如,连续 5 个以上项目用相同的值评分),(4) 管理内的高变异性(标准差大于 1.8),(5) 多个项目上的异常反应(即多变量异常值),和 (6) 异常评分(例如,在第 1 项上评分为 4、5 或 6)。在 26%的 MADRS 管理中提出了异常反应标志,在 97%的蒙特卡罗数据中提出了异常反应标志。在没有专家标志的管理中,有 21.7%有异常标志,在有至少一个专家标志的管理中,有 27.7%也有异常标志。异常值模式标志似乎是专家得出的标志在提高临床试验测量中的有用补充。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验