Suppr超能文献

一致性检验可提高汉密尔顿抑郁量表(HAM-D)的测量效果。

Consistency checks to improve measurement with the Hamilton Rating Scale for Depression (HAM-D).

机构信息

Bar Ilan University, Ramat Gan, Israel.

Department of Psychiatry, Columbia University, c/o 2466 Westlake Ave N., #19, Seattle, WA 98109, United States.

出版信息

J Affect Disord. 2022 Apr 1;302:273-279. doi: 10.1016/j.jad.2022.01.105. Epub 2022 Jan 29.

Abstract

BACKGROUND

Symptom manifestations in mood disorders can be subtle. Cumulatively, small imprecisions in measurement can limit our ability to measure treatment response accurately. Logical and statistical consistency checks between item responses (i.e., cross-sectionally) and across administrations (i.e., longitudinally) can contribute to improving measurement fidelity.

METHODS

The International Society for CNS Clinical Trials and Methodology convened an expert Working Group that assembled flags indicating consistency/inconsistency ratings for the Hamilton Rating Scale for Depression (HAM-D17), a widely-used rating scale in studies of depression. Proposed flags were applied to assessments derived from the NEWMEDS data repository of 95,468 HAM-D administrations from 32 registration trials of antidepressant medications and to Monte Carlo-simulated data as a proxy for applying flags under conditions of known inconsistency.

RESULTS

Two types of flags were derived: logical consistency checks and statistical outlier-response pattern checks. Almost thirty percent of the HAMD administrations had at least one logical scoring inconsistency flag. Seven percent had flags judged to suggest that a thorough review of rating is warranted. Almost 22% of the administrations had at least one statistical outlier flag and 7.9% had more than one. Most of the administrations in the Monte Carlo- simulated data raised multiple flags.

LIMITATIONS

Flagged ratings may represent less-common presentations of administrations done correctly.

CONCLUSIONS

Application of flags to clinical ratings may aid in detecting imprecise measurement. Reviewing and addressing these flags may improve reliability and validity of clinical trial data.

摘要

背景

情绪障碍的症状表现可能很微妙。在累积的情况下,测量中的微小不精确性可能会限制我们准确测量治疗反应的能力。项目反应之间的逻辑和统计一致性检查(即横截面)和跨管理(即纵向)可以有助于提高测量的准确性。

方法

国际中枢神经系统临床试验和方法学会召集了一个专家工作组,为广泛用于抑郁症研究的汉密尔顿抑郁量表(HAM-D17)制定了一致性/不一致性标记的指示符。建议的标记应用于从 32 项抗抑郁药物注册试验的 NEWMEDS 数据存储库中得出的评估以及蒙特卡罗模拟数据,作为在已知不一致条件下应用标记的代理。

结果

得出了两种类型的标记:逻辑一致性检查和统计异常反应模式检查。近 30%的 HAMD 管理局至少有一个逻辑评分不一致标记。7%的标记被认为表明需要对评分进行彻底审查。近 22%的管理局至少有一个统计异常标记,7.9%的管理局有多个。蒙特卡罗模拟数据中的大多数管理局提出了多个标记。

局限性

标记的评分可能代表更常见的管理局表现正确。

结论

将标记应用于临床评分可能有助于检测不精确的测量。审查和解决这些标记可能会提高临床试验数据的可靠性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验