Suppr超能文献

开发和验证一种用于预测心肌梗死后心力衰竭患者死亡率和住院的人工神经网络算法:一项全国范围内基于人群的研究。

Development and validation of an artificial neural network algorithm to predict mortality and admission to hospital for heart failure after myocardial infarction: a nationwide population-based study.

机构信息

Department of Cardiology, Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden.

Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.

出版信息

Lancet Digit Health. 2022 Jan;4(1):e37-e45. doi: 10.1016/S2589-7500(21)00228-4.

Abstract

BACKGROUND

Patients have an estimated mortality of 15-20% within the first year following myocardial infarction and one in four patients who survive myocardial infarction will develop heart failure, severely reducing quality of life and increasing the risk of long-term mortality. We aimed to establish the accuracy of an artificial neural network (ANN) algorithm in predicting 1-year mortality and admission to hospital for heart failure after myocardial infarction.

METHODS

In this nationwide population-based study, we used data for all patients admitted to hospital for myocardial infarction and discharged alive from a coronary care unit in Sweden (n=139 288) between Jan 1, 2008, and April 1, 2017, from the Swedish Web system for Enhancement and Development of Evidence-based care in Heart disease Evaluated According to Recommended Therapies (SWEDEHEART) nationwide registry; these patients were randomly divided into training (80%) and testing (20%) datasets. We developed an ANN using 21 variables (including age, sex, medical history, previous medications, in-hospital characteristics, and discharge medications) associated with the outcomes of interest with a back-propagation algorithm in the training dataset and tested it in the testing dataset. The ANN algorithm was then validated in patients with incident myocardial infarction enrolled in the Western Denmark Heart Registry (external validation cohort) between Jan 1, 2008, and Dec 31, 2016. The predictive ability of the model was evaluated using area under the receiver operating characteristic curve (AUROC) and Youden's index was established as a means of identifying an empirical dichotomous cutoff, allowing further evaluation of model performance.

FINDINGS

139 288 patients who were admitted to hospital for myocardial infarction in the SWEDEHEART registry were randomly divided into a training dataset of 111 558 (80%) patients and a testing dataset of 27 730 (20%) patients. 30 971 patients with myocardial infarction who were enrolled in the Western Denmark Heart Registry were included in the external validation cohort. A first event, either all-cause mortality or admission to hospital for heart failure 1 year after myocardial infarction, occurred in 32 308 (23·2%) patients in the testing and training cohorts only. For 1-year all-cause mortality, the ANN had an AUROC of 0·85 (95% CI 0·84-0·85) in the testing dataset and 0·84 (0·83-0·84) in the external validation cohort. The AUROC for admission to hospital for heart failure within 1 year was 0·82 (0·81-0·82) in the testing dataset and 0·78 (0·77-0·79) in the external validation dataset. With an empirical cutoff the ANN algorithm correctly classified 73·6% of patients with regard to all-cause mortality and 61·5% of patients with regard to admission to hospital for heart failure in the external validation cohort, ruling out adverse outcomes with 97·1-98·7% probability in the external validation cohort.

INTERPRETATION

Identifying patients at a high risk of developing heart failure or death after myocardial infarction could result in tailored therapies and monitoring by the allocation of resources to those at greatest risk.

FUNDING

The Swedish Heart and Lung Foundation, Swedish Scientific Research Council, Swedish Foundation for Strategic Research, Knut and Alice Wallenberg Foundation, ALF Agreement on Medical Education and Research, Skane University Hospital, The Bundy Academy, the Märta Winkler Foundation, the Anna-Lisa and Sven-Eric Lundgren Foundation for Medical Research.

摘要

背景

心肌梗死后患者的 1 年死亡率估计为 15%-20%,四分之一的心肌梗死后幸存患者会发展为心力衰竭,这严重降低了生活质量并增加了长期死亡风险。我们旨在确定人工神经网络(ANN)算法在预测心肌梗死后 1 年死亡率和因心力衰竭住院方面的准确性。

方法

在这项基于全国人口的研究中,我们使用了瑞典 2008 年 1 月 1 日至 2017 年 4 月 1 日期间在瑞典心脏治疗建议强化和发展的网络系统(SWEDEHEART)全国注册中心因心肌梗死住院并存活出院的所有患者的数据(n=139288);这些患者被随机分为训练(80%)和测试(20%)数据集。我们使用与研究结果相关的 21 个变量(包括年龄、性别、病史、既往用药、住院期间特征和出院时用药)在训练数据集中开发了一个反向传播算法的 ANN,并在测试数据集中对其进行了测试。然后在 2008 年 1 月 1 日至 2016 年 12 月 31 日期间纳入西方丹麦心脏登记处(Western Denmark Heart Registry)的心肌梗死新发病例患者中对模型进行了验证(外部验证队列)。使用接受者操作特征曲线下的面积(AUROC)评估模型的预测能力,并建立尤登指数作为识别经验性二分截断值的一种手段,以便进一步评估模型性能。

发现

SWEDEHEART 登记处随机将 139288 名因心肌梗死住院的患者分为训练数据集(111558 名患者,占 80%)和测试数据集(27730 名患者,占 20%)。西方丹麦心脏登记处纳入了 30971 名心肌梗死患者作为外部验证队列。仅在测试和训练队列中,32308 名患者(23.2%)发生了 1 年后全因死亡或心力衰竭住院的首次事件。对于 1 年全因死亡率,ANN 在测试数据集中的 AUROC 为 0.85(95%CI 0.84-0.85),在外部验证队列中为 0.84(0.83-0.84)。在测试数据集中,1 年内因心力衰竭住院的 AUROC 为 0.82(0.81-0.82),在外部验证数据集中为 0.78(0.77-0.79)。在外部验证队列中,ANN 算法使用经验性截断值正确分类了 73.6%的全因死亡率患者和 61.5%的心力衰竭住院率患者,将不良结局的排除概率设定为 97.1%-98.7%。

解释

识别心肌梗死后发生心力衰竭或死亡风险较高的患者,可通过对高危患者进行靶向治疗和监测,从而合理分配资源。

资金

瑞典心脏和肺基金会、瑞典科学研究理事会、瑞典战略研究基金会、克努特和爱丽丝·瓦伦堡基金会、医学教育和研究 ALF 协议、斯科讷大学医院、Bundy 学院、Märta Winkler 基金会、安娜-莉萨和斯文-埃里克·伦德格伦基金会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验