Suppr超能文献

用于预测急性心肌梗死后心力衰竭严重程度的可解释人工智能模型。

Interpretable artificial intelligence model for predicting heart failure severity after acute myocardial infarction.

作者信息

Guo Chenglong, Gao Binyu, Han Xuexue, Zhang Tianxing, Tao Tianqi, Xia Jinggang, Liu Honglei

机构信息

Pulmonary Vascular Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.

Biological Science & Medical Engineering, Southeast University, Nanjing, 518000, China.

出版信息

BMC Cardiovasc Disord. 2025 May 12;25(1):362. doi: 10.1186/s12872-025-04818-1.

Abstract

BACKGROUND

Heart failure (HF) after acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. Accurate prediction and early identification of HF severity are crucial for initiating preventive measures and optimizing treatment strategies. This study aimed to develop an interpretable artificial intelligence (AI) model for HF severity prediction using multidimensional clinical data.

METHODS

This study included data from 1574 AMI patients, including medical history, clinical features, physiological parameters, laboratory test, coronary angiography and echocardiography results. Both deep learning (TabNet, Multi-Layer Perceptron) and machine learning (Random Forest, XGboost) models were employed in constructing model. Additionally, the Shapley Additive Explanation (SHAP) method was used to elucidate clinical factors importance and enhance model interpretability. A web platform ( https://prediction-killip-gby.streamlit.app/ ) was also developed to facilitate clinical application.

RESULTS

Among the models, TabNet demonstrated the best performance, achieving an AUROC of 0.827 for KILLIP four-class classification and 0.831 for KILLIP binary classification. Key clinical factors such as GRACE score, NT-pro BNP, and TIMI score were highly correlated with KILLIP classification, aligning with established clinical knowledge.

CONCLUSIONS

By leveraging easily accessible multidimensional data, this model enables accurate early prediction and personalized diagnosis of HF risk and severity following AMI. It supports early clinical intervention and improves patient outcomes, offering significant clinical application value.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

急性心肌梗死(AMI)后发生的心衰(HF)是全球范围内导致死亡和发病的主要原因。准确预测和早期识别心衰严重程度对于启动预防措施和优化治疗策略至关重要。本研究旨在利用多维度临床数据开发一种可解释的人工智能(AI)模型,用于预测心衰严重程度。

方法

本研究纳入了1574例AMI患者的数据,包括病史、临床特征、生理参数、实验室检查、冠状动脉造影和超声心动图结果。在构建模型时采用了深度学习(TabNet、多层感知器)和机器学习(随机森林、XGBoost)模型。此外,使用Shapley值相加解释(SHAP)方法来阐明临床因素的重要性并增强模型的可解释性。还开发了一个网络平台(https://prediction-killip-gby.streamlit.app/)以促进临床应用。

结果

在这些模型中,TabNet表现最佳,在KILLIP四级分类中AUROC为0.827,在KILLIP二元分类中AUROC为0.831。关键临床因素如GRACE评分、NT-pro BNP和TIMI评分与KILLIP分类高度相关,与既定的临床知识相符。

结论

通过利用易于获取的多维度数据,该模型能够对AMI后的心衰风险和严重程度进行准确的早期预测和个性化诊断。它支持早期临床干预并改善患者预后,具有显著的临床应用价值。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de0b/12067671/27e2c2deb657/12872_2025_4818_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验