Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
J Control Release. 2022 Jan;341:812-827. doi: 10.1016/j.jconrel.2021.12.023. Epub 2021 Dec 23.
The combination of chemotherapy with the immune checkpoint blockade (ICB) therapy is bringing a tremendous hope in the treatment of malignant tumors. However, the treatment efficacy of the existing chemo-immunotherapy is not satisfactory due to the high cost and immunogenicity of ICB antibodies, low response rate to ICB, off-target toxicity of therapeutic agents, and low drug co-delivery efficacy. Therefore, a high-efficient nanosystem combining the delivery of chemotherapeutics with small molecule ICB inhibitors may be promising for an efficient cancer therapy. Herein, a novel reactive oxygen species (ROS)-activated liposome nanoplatform was constructed by the loading of a ROS-sensitive paclitaxel derivative (PSN) into liposomes to overcome the difficulties on delivering paclitaxel mostly represented by premature drug release and a low amount accumulated into the tumor. The innovative liposomal nanosystem was rationally designed by a remote loading of BMS-202 (a small molecule PD-1/PD-L1 inhibitor) and PSN into the liposomes for a ROS-sensitive paclitaxel release and sustained BMS-202 release. The co-loaded liposomes resulted in a high co-loading ability and improved pharmacokinetic properties. An orthotopic 4 T1 breast cancer model was used to evaluate the efficiency of our nanoplatform in vivo, resulting in a superior antitumor activity. The antitumor immunity was activated by paclitaxel-mediated immunogenic cell death, while BMS-202 continuously blocked PD-L1 which could be up-regulated by paclitaxel in tumors to increase the response to ICB and further recover the host immune surveillance. These results revealed that this dual-delivery liposome might provide a promising strategy for a high-efficient chemo-immunotherapy, exhibiting a great potential for clinical translation.
化疗与免疫检查点阻断(ICB)疗法的联合应用为恶性肿瘤的治疗带来了巨大的希望。然而,由于 ICB 抗体的高成本和免疫原性、ICB 低响应率、治疗剂的脱靶毒性以及药物共递效率低,现有的化疗免疫疗法的治疗效果并不理想。因此,一种将化疗药物与小分子 ICB 抑制剂联合递药的高效纳米系统可能是高效癌症治疗的有前途的方法。本文构建了一种新型的活性氧(ROS)激活脂质体纳米平台,通过将 ROS 敏感的紫杉醇衍生物(PSN)载入脂质体中克服了紫杉醇递送的困难,主要表现为药物过早释放和进入肿瘤的量低。该创新的脂质体纳米系统通过远程载入 BMS-202(一种小分子 PD-1/PD-L1 抑制剂)和 PSN 到脂质体中进行 ROS 敏感的紫杉醇释放和持续的 BMS-202 释放来进行合理设计。共载入的脂质体具有高共载能力和改善的药代动力学特性。使用原位 4T1 乳腺癌模型在体内评估我们的纳米平台的效率,结果显示出优异的抗肿瘤活性。紫杉醇介导的免疫原性细胞死亡激活了抗肿瘤免疫,而 BMS-202 持续阻断了紫杉醇在肿瘤中上调的 PD-L1,以增加对 ICB 的反应,并进一步恢复宿主免疫监视。这些结果表明,这种双重递药脂质体可能为高效化疗免疫治疗提供有前途的策略,具有很大的临床转化潜力。
J Control Release. 2022-1
Adv Sci (Weinh). 2021-12
ACS Appl Mater Interfaces. 2021-8-25
Int J Nanomedicine. 2025-2-25
Pharmaceutics. 2025-2-13
Mater Today Bio. 2024-12-5
J Hematol Oncol. 2024-7-19
Signal Transduct Target Ther. 2024-1-1