Department of Graduate, Bengbu Medical College, Bengbu, Anhui 233000, China.
Department of Radiology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China.
Acad Radiol. 2022 Sep;29(9):1394-1403. doi: 10.1016/j.acra.2021.11.011. Epub 2021 Dec 23.
To investigate the value of body composition changes measured by quantitative computer tomography (QCT) in evaluating the prognosis of advanced epithelial ovarian cancer (AEOC) patients who underwent primary debulking surgery (PDS) and adjuvant platinum-based chemotherapy, and constructed a nomogram model for predicting survival in combination with prognostic inflammation score (PIS).
Fifty-seven patients with AEOC between 2012 and 2016 were retrospectively enrolled. Pre- and post-treatment CT images were used to analyze the body composition biomarkers. The subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), cross-sectional area of paraspinal skeletal muscle area (PMA), skeletal muscle density (SMD), body mineral density (BMD) were measured from two sets of CT images.
In multivariate analyses, VFA gain, PMA loss, BMD loss, and PIS were independent risk factors of overall survival (OS) (HR = 3.7, 3.0, 2.8, 1.9, respectively, all p < 0.05). Receiver operating characteristic (ROC) curves showed that the prognostic model combining body composition changes (BCC) and PIS had the highest predictive performance (area under the curve = 0.890). The concordance index (C-index) of the prognostic nomogram was 0.779 (95% CI, 0.673-0.886). Decision curve analysis (DCA) demonstrated the prognostic nomogram had a great distinguishing performance.
CT-based body composition analyses and PIS were associated with poor OS for AEOC patients who underwent PDS and adjuvant platinum-based chemotherapy. The prognostic nomogram with a combination of BCC and PIS was dependable in predicting survival for AEOC patients during treatment.
探讨定量计算机断层扫描(QCT)测量的身体成分变化在评估接受初次肿瘤细胞减灭术(PDS)和辅助铂类化疗的晚期上皮性卵巢癌(AEOC)患者预后中的价值,并结合预后炎症评分(PIS)构建预测生存的列线图模型。
回顾性纳入 2012 年至 2016 年间的 57 例 AEOC 患者。使用治疗前后 CT 图像分析身体成分生物标志物。从两组 CT 图像中测量皮下脂肪组织(SAT)、内脏脂肪组织(VAT)、脊柱旁骨骼肌面积(PMA)的横截面积、骨骼肌密度(SMD)和骨矿物质密度(BMD)。
多因素分析显示,VFA 增加、PMA 减少、BMD 减少和 PIS 是总生存(OS)的独立危险因素(HR 分别为 3.7、3.0、2.8、1.9,均 P < 0.05)。受试者工作特征(ROC)曲线显示,结合身体成分变化(BCC)和 PIS 的预后模型具有最高的预测性能(曲线下面积为 0.890)。预后列线图的一致性指数(C-index)为 0.779(95%CI:0.673-0.886)。决策曲线分析(DCA)表明,预后列线图具有良好的鉴别性能。
对于接受 PDS 和辅助铂类化疗的 AEOC 患者,基于 CT 的身体成分分析和 PIS 与较差的 OS 相关。结合 BCC 和 PIS 的预后列线图可用于预测 AEOC 患者治疗期间的生存情况。