Suppr超能文献

结合基于计算机断层扫描的身体成分变化与临床预后因素的列线图,以预测局部晚期宫颈癌患者的生存率。

Nomograms combining computed tomography-based body composition changes with clinical prognostic factors to predict survival in locally advanced cervical cancer patients.

作者信息

Fu Baoyue, Wei Longyu, Wang Chuanbin, Xiong Baizhu, Bo Juan, Jiang Xueyan, Zhang Yu, Jia Haodong, Dong Jiangning

机构信息

Bengbu Medical College, Bengbu, Anhui, China.

Department of Radiology, the First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China.

出版信息

J Xray Sci Technol. 2024;32(2):427-441. doi: 10.3233/XST-230212.

Abstract

OBJECTIVE

To explore the value of body composition changes (BCC) measured by quantitative computed tomography (QCT) for evaluating the survival of patients with locally advanced cervical cancer (LACC) underwent concurrent chemoradiotherapy (CCRT), nomograms combined BCC with clinical prognostic factors (CPF) were constructed to predict overall survival (OS) and progression-free survival (PFS).

METHODS

Eighty-eight patients with LACC were retrospectively selected. All patients underwent QCT scans before and after CCRT, bone mineral density (BMD), subcutaneous fat area (SFA), visceral fat area (VFA), total fat area (TFA), paravertebral muscle area (PMA) were measured from two sets of computed tomography (CT) images, and change rates of these were calculated.

RESULTS

Multivariate Cox regression analysis showed ΔBMD, ΔSFA, SCC-Ag, LNM were independent factors for OS (HR = 3.560, 5.870, 2.702, 2.499, respectively, all P < 0.05); ΔPMA, SCC-Ag, LNM were independent factors for PFS (HR = 2.915, 4.291, 2.902, respectively, all P < 0.05). Prognostic models of BCC combined with CPF had the highest predictive performance, and the area under the curve (AUC) for OS and PFS were 0.837, 0.846, respectively. The concordance index (C-index) of nomograms for OS and PFS were 0.834, 0.799, respectively. Calibration curves showed good agreement between the nomograms' predictive and actual OS and PFS, decision curve analysis (DCA) showed good clinical benefit of nomograms.

CONCLUSION

CT-based body composition changes and CPF (SCC-Ag, LNM) were associated with survival in patients with LACC. The prognostic nomograms combined BCC with CPF were able to predict the OS and PFS in patients with LACC reliably.

摘要

目的

为探讨定量计算机断层扫描(QCT)测量的身体成分变化(BCC)在评估接受同步放化疗(CCRT)的局部晚期宫颈癌(LACC)患者生存情况中的价值,构建了将BCC与临床预后因素(CPF)相结合的列线图,以预测总生存期(OS)和无进展生存期(PFS)。

方法

回顾性选取88例LACC患者。所有患者在CCRT前后均接受QCT扫描,从两组计算机断层扫描(CT)图像中测量骨密度(BMD)、皮下脂肪面积(SFA)、内脏脂肪面积(VFA)、总脂肪面积(TFA)、椎旁肌面积(PMA),并计算这些指标的变化率。

结果

多因素Cox回归分析显示,ΔBMD、ΔSFA、鳞状细胞癌抗原(SCC-Ag)、淋巴结转移(LNM)是OS的独立影响因素(HR分别为3.560、5.870、2.702、2.499,均P<0.05);ΔPMA、SCC-Ag、LNM是PFS的独立影响因素(HR分别为2.915、4.291、2.902,均P<0.05)。BCC与CPF相结合的预后模型预测性能最高,OS和PFS的曲线下面积(AUC)分别为0.837、0.846。OS和PFS列线图的一致性指数(C-index)分别为0.834、0.799。校准曲线显示列线图预测的OS和PFS与实际情况吻合良好,决策曲线分析(DCA)显示列线图具有良好的临床效益。

结论

基于CT的身体成分变化和CPF(SCC-Ag、LNM)与LACC患者的生存情况相关。将BCC与CPF相结合的预后列线图能够可靠地预测LACC患者的OS和PFS。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验