Abbattista Maria R, Ashoorzadeh Amir, Guise Christopher P, Mowday Alexandra M, Mittra Rituparna, Silva Shevan, Hicks Kevin O, Bull Matthew R, Jackson-Patel Victoria, Lin Xiaojing, Prosser Gareth A, Lambie Neil K, Dachs Gabi U, Ackerley David F, Smaill Jeff B, Patterson Adam V
Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand.
Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand.
Pharmaceuticals (Basel). 2021 Nov 26;14(12):1231. doi: 10.3390/ph14121231.
PR-104 is a phosphate ester pre-prodrug that is converted in vivo to its cognate alcohol, PR-104A, a latent alkylator which forms potent cytotoxins upon bioreduction. Hypoxia selectivity results from one-electron nitro reduction of PR-104A, in which cytochrome P450 oxidoreductase (POR) plays an important role. However, PR-104A also undergoes 'off-target' two-electron reduction by human aldo-keto reductase 1C3 (AKR1C3), resulting in activation in oxygenated tissues. AKR1C3 expression in human myeloid progenitor cells probably accounts for the dose-limiting myelotoxicity of PR-104 documented in clinical trials, resulting in human PR-104A plasma exposure levels 3.4- to 9.6-fold lower than can be achieved in murine models. Structure-based design to eliminate AKR1C3 activation thus represents a strategy for restoring the therapeutic window of this class of agent in humans. Here, we identified SN29176, a PR-104A analogue resistant to human AKR1C3 activation. SN29176 retains hypoxia selectivity in vitro with aerobic/hypoxic IC ratios of 9 to 145, remains a substrate for POR and triggers γH2AX induction and cell cycle arrest in a comparable manner to PR-104A. SN35141, the soluble phosphate pre-prodrug of SN29176, exhibited superior hypoxic tumour log cell kill (>4.0) to PR-104 (2.5-3.7) in vivo at doses predicted to be achievable in humans. Orthologues of human AKR1C3 from mouse, rat and dog were incapable of reducing PR-104A, thus identifying an underlying cause for the discrepancy in PR-104 tolerance in pre-clinical models versus humans. In contrast, the macaque AKR1C3 gene orthologue was able to metabolise PR-104A, indicating that this species may be suitable for evaluating the toxicokinetics of PR-104 analogues for clinical development. We confirmed that SN29176 was not a substrate for AKR1C3 orthologues across all four pre-clinical species, demonstrating that this prodrug analogue class is suitable for further development. Based on these findings, a prodrug candidate was subsequently identified for clinical trials.
PR - 104是一种磷酸酯前药,在体内可转化为其相应的醇类物质PR - 104A,PR - 104A是一种潜在的烷基化剂,在生物还原后形成强效细胞毒素。缺氧选择性源于PR - 104A的单电子硝基还原,其中细胞色素P450氧化还原酶(POR)起重要作用。然而,PR - 104A也会被人醛糖酮还原酶1C3(AKR1C3)进行“脱靶”双电子还原,从而在含氧组织中被激活。人骨髓祖细胞中AKR1C3的表达可能是临床试验中记录的PR - 104剂量限制性骨髓毒性的原因,导致人PR - 104A血浆暴露水平比在小鼠模型中所能达到的低3.4至9.6倍。基于结构的设计以消除AKR1C3激活因此代表了一种恢复这类药物在人体治疗窗口的策略。在此,我们鉴定出了SN29176,一种对人AKR1C3激活具有抗性的PR - 104A类似物。SN29176在体外保留缺氧选择性,需氧/缺氧IC比值为9至145,仍然是POR的底物,并以与PR - 104A相当的方式触发γH2AX诱导和细胞周期停滞。SN35141,SN29176的可溶性磷酸前药,在预测人类可达到的剂量下,在体内对缺氧肿瘤的对数细胞杀伤作用(>4.0)优于PR - 104(2.5 - 3.7)。来自小鼠、大鼠和狗的人AKR1C3直系同源物无法还原PR - 104A,从而确定了临床前模型与人类在PR - 104耐受性方面存在差异的根本原因。相比之下,猕猴AKR1C3基因直系同源物能够代谢PR - 104A,表明该物种可能适合评估用于临床开发的PR - 104类似物的毒代动力学。我们证实SN29176在所有四种临床前物种中都不是AKR1C3直系同源物的底物,表明这类前药类似物适合进一步开发。基于这些发现,随后确定了一种前药候选物用于临床试验。