文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Mechanically Reinforced, Flexible, Hydrophobic and UV Impermeable Starch-Cellulose Nanofibers (CNF)-Lignin Composites with Good Barrier and Thermal Properties.

作者信息

Zhao Yadong, Troedsson Christofer, Bouquet Jean-Marie, Thompson Eric M, Zheng Bin, Wang Miao

机构信息

School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.

Ocean TuniCell AS, P.O. Box 12, 5868 Blomsterdalen, Norway.

出版信息

Polymers (Basel). 2021 Dec 12;13(24):4346. doi: 10.3390/polym13244346.


DOI:10.3390/polym13244346
PMID:34960897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8706025/
Abstract

Bio-based composite films have been widely studied as potential substitutes for conventional plastics in food packaging. The aim of this study was to develop multifunctional composite films by introducing cellulose nanofibers (CNF) and lignin into starch-based films. Instead of costly and complicated chemical modification or covalent coupling, this study optimized the performance of the composite films by simply tuning the formulation. We found that starch films were mechanically reinforced by CNF, with lignin dispersing as nanoparticles embedded in the matrix. The newly built-up hydrogen bonding between these three components improves the integration of the films, while the introduction of CNF and lignin improved the thermal stability of the starch-based films. Lignin, as a functional additive, improved hydrophobicity and blocked UV transmission. The inherent barrier property of CNF and the dense starch matrix provided the composite films with good gas barrier properties. The prepared flexible films were optically transparent, and exhibited UV blocking ability, good oxygen-barrier properties, high hydrophobicity, appreciable mechanical strength and good thermal stability. These characteristics indicate potential utilization as a green alternative to synthetic plastics especially for food packaging applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/4c2ffe069043/polymers-13-04346-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/9afc4b36a1cd/polymers-13-04346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/0650f7a62ef5/polymers-13-04346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/fea9e624d753/polymers-13-04346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/4d67a44c9a9b/polymers-13-04346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/cb6a2604c9ab/polymers-13-04346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/fa4e9067954c/polymers-13-04346-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/b6003171f4a8/polymers-13-04346-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/4c2ffe069043/polymers-13-04346-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/9afc4b36a1cd/polymers-13-04346-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/0650f7a62ef5/polymers-13-04346-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/fea9e624d753/polymers-13-04346-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/4d67a44c9a9b/polymers-13-04346-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/cb6a2604c9ab/polymers-13-04346-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/fa4e9067954c/polymers-13-04346-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/b6003171f4a8/polymers-13-04346-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a83/8706025/4c2ffe069043/polymers-13-04346-g008.jpg

相似文献

[1]
Mechanically Reinforced, Flexible, Hydrophobic and UV Impermeable Starch-Cellulose Nanofibers (CNF)-Lignin Composites with Good Barrier and Thermal Properties.

Polymers (Basel). 2021-12-12

[2]
Thermally stable, enhanced water barrier, high strength starch bio-composite reinforced with lignin containing cellulose nanofibrils.

Carbohydr Polym. 2019-11-15

[3]
The effects of cellulose nanocrystal and cellulose nanofiber on the properties of pumpkin starch-based composite films.

Int J Biol Macromol. 2021-12-1

[4]
Bio-based films with high antioxidant and improved water-resistant properties from cellulose nanofibres and lignin nanoparticles.

Int J Biol Macromol. 2023-2-1

[5]
The Impact of Lignin Structural Diversity on Performance of Cellulose Nanofiber (CNF)-Starch Composite Films.

Polymers (Basel). 2019-3-21

[6]
BNNS/PVA bilayer composite film with multiple-improved properties by the synergistic actions of cellulose nanofibrils and lignin nanoparticles.

Int J Biol Macromol. 2020-8-15

[7]
Binary and ternary sustainable composites of gellan gum, hydroxyethyl cellulose and lignin for food packaging applications: Biocompatibility, antioxidant activity, UV and water barrier properties.

Int J Biol Macromol. 2020-6-15

[8]
Natural lignocellulosic biomass structure inspired CNF/Lignin/PBAT composite film with thermoplastic, antibacterial and UV-blocking abilities.

Int J Biol Macromol. 2024-6

[9]
Flexible cellulose nanofibers/MXene composite films for UV-shielding packaging.

Int J Biol Macromol. 2024-4

[10]
Bio-Composites Consisting of Cellulose Nanofibers and Na Montmorillonite Clay: Morphology and Performance Property.

Polymers (Basel). 2020-6-28

引用本文的文献

[1]
Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging.

Foods. 2024-12-11

[2]
Processing, Properties, Modifications, and Environmental Impact of Nanocellulose/Biopolymer Composites: A Review.

Polymers (Basel). 2023-2-28

[3]
Antibacterial and Biodegradable Polysaccharide-Based Films for Food Packaging Applications: Comparative Study.

Materials (Basel). 2022-4-29

本文引用的文献

[1]
Use of nanocellulose in printed electronics: a review.

Nanoscale. 2016-6-27

[2]
Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans.

Carbohydr Polym. 2014-9-22

[3]
Polycaprolactone/starch composite: Fabrication, structure, properties, and applications.

J Biomed Mater Res A. 2015-7

[4]
High-aspect ratio fillers: fiber-reinforced composites and their anisotropic properties.

Dent Mater. 2014-7-31

[5]
Synthesis of nano cellulose fibers and effect on thermoplastics starch based films.

Carbohydr Polym. 2012-3-19

[6]
Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods.

ACS Appl Mater Interfaces. 2014-5-14

[7]
Ultraviolet spectroscopy of fundamental lignin subunits: guaiacol, 4-methylguaiacol, syringol, and 4-methylsyringol.

J Chem Phys. 2013-10-14

[8]
Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose.

Bioresour Technol. 2012-10-23

[9]
A spectroscopic assessment of cellulose and the molecular mechanisms of cellulose biosynthesis in the ascidian Ciona intestinalis.

Mar Genomics. 2008-3

[10]
Cellulose whisker/epoxy resin nanocomposites.

ACS Appl Mater Interfaces. 2010-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索