Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
University of Aalen, Aalen, Germany.
Sci Rep. 2021 Dec 27;11(1):24463. doi: 10.1038/s41598-021-03941-1.
Bioacoustic analyses of animal vocalizations are predominantly accomplished through manual scanning, a highly subjective and time-consuming process. Thus, validated automated analyses are needed that are usable for a variety of animal species and easy to handle by non-programing specialists. This study tested and validated whether DeepSqueak, a user-friendly software, developed for rodent ultrasonic vocalizations, can be generalized to automate the detection/segmentation, clustering and classification of high-frequency/ultrasonic vocalizations of a primate species. Our validation procedure showed that the trained detectors for vocalizations of the gray mouse lemur (Microcebus murinus) can deal with different call types, individual variation and different recording quality. Implementing additional filters drastically reduced noise signals (4225 events) and call fragments (637 events), resulting in 91% correct detections (N = 3040). Additionally, the detectors could be used to detect the vocalizations of an evolutionary closely related species, the Goodman's mouse lemur (M. lehilahytsara). An integrated supervised classifier classified 93% of the 2683 calls correctly to the respective call type, and the unsupervised clustering model grouped the calls into clusters matching the published human-made categories. This study shows that DeepSqueak can be successfully utilized to detect, cluster and classify high-frequency/ultrasonic vocalizations of other taxa than rodents, and suggests a validation procedure usable to evaluate further bioacoustics software.
动物发声的生物声学分析主要通过手动扫描来完成,这是一个高度主观和耗时的过程。因此,需要经过验证的自动化分析方法,这些方法可用于多种动物物种,并且易于非编程专业人员使用。本研究测试并验证了一款名为 DeepSqueak 的用户友好型软件,该软件专为啮齿动物超声波发声而开发,是否可以推广用于自动检测/分割、聚类和分类灵长类物种的高频/超声波发声。我们的验证程序表明,针对灰鼠狐猴(Microcebus murinus)发声的训练检测器可以处理不同的叫声类型、个体差异和不同的录音质量。实施额外的滤波器可以大大减少噪声信号(4225 个事件)和叫声片段(637 个事件),从而实现 91%的正确检测(N=3040)。此外,这些检测器还可用于检测进化上密切相关的物种——Goodman 鼠狐猴(M. lehilahytsara)的发声。集成的监督分类器将 2683 个叫声中的 93%正确分类为相应的叫声类型,而无监督聚类模型将叫声分为与已发表的人为分类相匹配的聚类。本研究表明,DeepSqueak 可成功用于检测、聚类和分类除啮齿动物以外的其他分类群的高频/超声波发声,并提出了一种可用于评估进一步生物声学软件的验证程序。