Li Xiaowei, Zheng Yongwei, Fullerton William R, Li Christopher Y
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
ACS Appl Mater Interfaces. 2022 Jan 12;14(1):484-491. doi: 10.1021/acsami.1c13186. Epub 2021 Dec 28.
The practical application of lithium-metal batteries (LMBs) is hindered by the lithium dendrite formation during cycling. In this work, we report a multilayered solid polymer electrolyte (SPE) formed by sandwiching a comb-chain cross-linker-based network SPE (ConSPE) film with a linear poly(ethylene oxide) (PEO) SPE coating. Benefiting from the drastically different lithium dendrite resisting properties of the ConSPE and linear PEO SPE, the lithium dendrite growth in the multilayered SPEs could be tuned, with the linear PEO SPE effectively serving as a sacrificial layer to accommodate the lithium dendrite growth. Symmetrical lithium cells with the multilayered SPE exhibited an extended short-circuit time ∼4.1 times that for the single-layer ConSPE at a high current density of 1.5 mA cm. Li/LiFePO batteries with multilayered SPEs delivered superior cycling performance at extremely high C-rates of 2C and 10C. Our multilayered SPE architecture, therefore, opens up a new gateway for advancing SPE design for future LMBs.
锂金属电池(LMBs)的实际应用受到循环过程中锂枝晶形成的阻碍。在这项工作中,我们报道了一种多层固体聚合物电解质(SPE),它是通过将基于梳状链交联剂的网络SPE(ConSPE)薄膜夹在一层线性聚环氧乙烷(PEO)SPE涂层之间形成的。得益于ConSPE和线性PEO SPE截然不同的抗锂枝晶性能,多层SPE中的锂枝晶生长可以得到调控,其中线性PEO SPE有效地充当牺牲层以容纳锂枝晶的生长。具有多层SPE的对称锂电池在1.5 mA cm的高电流密度下表现出延长的短路时间,约为单层ConSPE的4.1倍。具有多层SPE的Li/LiFePO₄电池在2C和10C的极高倍率下展现出卓越的循环性能。因此,我们的多层SPE结构为推进未来LMBs的SPE设计开辟了一条新途径。