Suppr超能文献

计算机模拟分子对接和动态模拟丁香酚化合物对乳腺癌的作用。

In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer.

机构信息

Department of Pharmaceutical Chemistry, College of Medicals and Applied Sciences, Charmo University, Peshawa Street, Chamchamal, 46023, Sulaimani, Iraq.

Department of Nanoscience and Applied Chemistry, College of Medicals and Applied Sciences, Charmo University, Peshawa Street, Chamchamal, 46023, Sulaimani, Iraq.

出版信息

J Mol Model. 2021 Dec 28;28(1):17. doi: 10.1007/s00894-021-05010-w.

Abstract

Breast cancer is one of the most severe problems, and it is the primary cause of cancer-related death in females worldwide. The adverse effects and therapeutic resistance development are among the most potent clinical issues for potent medications for breast cancer treatment. The eugenol molecules have a significant affinity for breast cancer receptors. The aim of the study has been on the eugenol compounds, which has potent actions on Erα, PR, EGFR, CDK2, mTOR, ERBB2, c-Src, HSP90, and chemokines receptors inhibition. Initially, the drug-likeness property was examined to evaluate the anti-breast cancer activity by applying Lipinski's rule of five on 120 eugenol molecules. Further, structure-based virtual screening was performed via molecular docking, as protein-like interactions play a vital role in drug development. The 3D structure of the receptors has been acquired from the protein data bank and is docked with 87 3D PubChem and ZINC structures of eugenol compounds, and five FDA-approved anti-cancer drugs using AutoDock Vina. Then, the compounds were subjected to three replica molecular dynamic simulations run of 100 ns per system. The results were evaluated using root mean square deviation (RMSD), root mean square fluctuation (RMSF), and protein-ligand interactions to indicate protein-ligand complex stability. The results confirm that Eugenol cinnamaldehyde has the best docking score for breast cancer, followed by Aspirin eugenol ester and 4-Allyl-2-methoxyphenyl cinnamate. From the results obtained from in silico studies, we propose that the selected eugenols can be further investigated and evaluated for further lead optimization and drug development.

摘要

乳腺癌是最严重的问题之一,也是全球女性癌症相关死亡的主要原因。对于乳腺癌治疗的有效药物,其副作用和治疗抵抗的发展是最主要的临床问题之一。丁香酚分子与乳腺癌受体具有很强的亲和力。本研究的目的是研究丁香酚化合物,这些化合物对 Erα、PR、EGFR、CDK2、mTOR、ERBB2、c-Src、HSP90 和趋化因子受体具有很强的抑制作用。最初,通过应用 Lipinski 的五规则对 120 个丁香酚分子进行药物相似性评估,以评估其抗乳腺癌活性。此外,还通过分子对接进行了基于结构的虚拟筛选,因为蛋白质样相互作用在药物开发中起着至关重要的作用。受体的 3D 结构从蛋白质数据库中获得,并与 87 个 3D PubChem 和 ZINC 结构的丁香酚化合物以及 5 种 FDA 批准的抗癌药物一起使用 AutoDock Vina 进行对接。然后,将化合物进行 3 次 replica 分子动力学模拟,每个系统运行 100ns。使用均方根偏差 (RMSD)、均方根波动 (RMSF) 和蛋白质-配体相互作用来评估结果,以指示蛋白质-配体复合物的稳定性。结果证实,丁香酚肉桂醛对乳腺癌的对接评分最好,其次是阿司匹林丁香酚酯和 4-烯丙基-2-甲氧基苯基肉桂酸。根据计算机研究的结果,我们建议进一步研究和评估所选的丁香酚,以进一步进行先导优化和药物开发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验