IEEE Trans Neural Netw Learn Syst. 2022 Jun;33(6):2324-2334. doi: 10.1109/TNNLS.2021.3132928. Epub 2022 Jun 1.
We propose a memory-augmented deep learning model for semisupervised anomaly detection (AD). While many traditional AD methods focus on modeling the distribution of normal data, additional constraints in the modeling process are needed to distinguish between normal and abnormal data. The proposed model, named memory augmented generative adversarial networks (MEMGAN), is coupled with external memory units through attentional operations. One property of MEMGAN in the latent space is such that encoded normal data are expected to reside in the convex hull of the memory units, while the abnormal ones are separated outside. This property makes the AD process of MEMGAN more robust and reliable. Experiments on AD datasets adapted from MVTec, MNIST, CIFAR10, and Arrhythmia demonstrate that MEMGAN notably improves over previous AD models. We also find that the decoded memory units in MEMGAN are more diverse and interpretable than those in previous memory-augmented models.
我们提出了一种基于记忆增强的深度学习模型,用于半监督异常检测(AD)。虽然许多传统的 AD 方法侧重于建模正常数据的分布,但在建模过程中需要额外的约束条件来区分正常数据和异常数据。所提出的模型名为记忆增强生成对抗网络(MEMGAN),通过注意力操作与外部记忆单元耦合。在潜在空间中,MEMGAN 的一个特性是,编码的正常数据预计将位于记忆单元的凸包内,而异常数据则位于外部。这个特性使得 MEMGAN 的 AD 过程更加稳健和可靠。在从 MVTec、MNIST、CIFAR10 和心律失常等数据集改编的 AD 数据集上进行的实验表明,MEMGAN 明显优于以前的 AD 模型。我们还发现,MEMGAN 中解码的记忆单元比以前的记忆增强模型中的记忆单元更加多样化和可解释。