Department of Radiation Oncology, University of California-Los Angeles.
Departments of Radiation Oncology.
Int J Radiat Oncol Biol Phys. 2022 Apr 1;112(5):1279-1287. doi: 10.1016/j.ijrobp.2021.12.153. Epub 2021 Dec 26.
To provide early and localized glioblastoma (GBM) recurrence prediction, we introduce a novel postsurgery multiparametric magnetic resonance-based support vector machine (SVM) method coupling with stem cell niche (SCN) proximity estimation.
This study used postsurgery magnetic resonance imaging (MRI) scans from 50 patients with recurrent GBM, obtained approximately 2 months before clinically diagnosed recurrence. The main prediction pipeline consisted of a proximity-based estimator to identify regions with high risk of recurrence (HRRs) and an SVM classifier to provide voxelwise prediction in HRRs. The HRRs were estimated using the weighted sum of inverse distances to 2 possible origins of recurrence-the SCN and the tumor cavity. Subsequently, multiparametric voxels (from T1, T1 contrast-enhanced, fluid-attenuated inversion recovery, T2, and apparent diffusion coefficient) within the HRR were grouped into recurrent (warped from the clinical diagnosis) and nonrecurrent subregions and fed into the proximity estimation-coupled SVM classifier (SVM). The cohort was randomly divided into 40% and 60% for training and testing, respectively. The trained SVM was then extrapolated to an earlier time point for earlier recurrence prediction. As an exploratory analysis, the SVM predictive cluster sizes and the image intensities from the 5 magnetic resonance sequences were compared across time to assess the progressive subclinical traces.
On 2-month prerecurrence MRI scans from 30 test cohort patients, the SVM classifier achieved a recall of 0.80, a precision of 0.69, an F1-score of 0.73, and a mean boundary distance of 7.49 mm. Exploratory analysis at early time points showed spatially consistent but significantly smaller subclinical clusters and significantly increased T1 contrast-enhanced and apparent diffusion coefficient values over time.
We demonstrated a novel voxelwise early prediction method, SVM for GBM recurrence based on clinical follow-up MR scans. The SVM is promising in localizing subclinical traces of recurrence 2 months ahead of clinical diagnosis and may be used to guide more effective personalized early salvage therapy.
为了实现胶质母细胞瘤(GBM)的早期和局部复发预测,我们引入了一种新的基于手术后多参数磁共振的支持向量机(SVM)方法,该方法结合了干细胞龛(SCN)邻近度估计。
本研究使用了 50 名复发性 GBM 患者的手术后磁共振成像(MRI)扫描数据,这些扫描数据是在临床诊断复发前约 2 个月获得的。主要的预测流程包括一个基于邻近度的估计器,用于识别具有高复发风险(HRR)的区域,以及一个 SVM 分类器,用于在 HRR 中提供体素级别的预测。HRR 是通过加权求和到 2 个可能的复发起源- SCN 和肿瘤腔的倒数距离来估计的。随后,将 HRR 内的多参数体素(来自 T1、T1 对比增强、液体衰减反转恢复、T2 和表观扩散系数)分为复发(从临床诊断变形而来)和非复发子区域,并输入到邻近度估计结合的 SVM 分类器(SVM)中。该队列被随机分为 40%和 60%用于训练和测试,分别。然后,将训练好的 SVM 外推到更早的时间点,以进行更早的复发预测。作为一项探索性分析,比较了 5 个磁共振序列的 SVM 预测聚类大小和图像强度随时间的变化,以评估亚临床痕迹的渐进性。
在 30 名测试队列患者的 2 个月前的预复发 MRI 扫描中,SVM 分类器的召回率为 0.80,精度为 0.69,F1 得分为 0.73,平均边界距离为 7.49mm。早期时间点的探索性分析表明,空间上一致但明显较小的亚临床聚类,以及随时间推移 T1 对比增强和表观扩散系数值的显著增加。
我们展示了一种新的基于临床随访磁共振扫描的 GBM 复发的 SVM 体素早期预测方法。SVM 有望在临床诊断前 2 个月定位复发的亚临床痕迹,并可用于指导更有效的个性化早期挽救治疗。