Suppr超能文献

动态对比增强磁共振成像在基于深度学习预测4级成人型弥漫性胶质瘤患者局部复发中的附加价值

Added value of dynamic contrast-enhanced MR imaging in deep learning-based prediction of local recurrence in grade 4 adult-type diffuse gliomas patients.

作者信息

Yoon Jungbin, Baek Nayeon, Yoo Roh-Eul, Choi Seung Hong, Kim Tae Min, Park Chul-Kee, Park Sung-Hye, Won Jae-Kyung, Lee Joo Ho, Lee Soon Tae, Choi Kyu Sung, Lee Ji Ye, Hwang Inpyeong, Kang Koung Mi, Yun Tae Jin

机构信息

Department of Radiology, Seoul National University College of Medicine, 101, Daehangno, Jongno-gu, Seoul, 03080, Republic of Korea.

Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.

出版信息

Sci Rep. 2024 Jan 25;14(1):2171. doi: 10.1038/s41598-024-52841-7.

Abstract

Local recurrences in patients with grade 4 adult-type diffuse gliomas mostly occur within residual non-enhancing T2 hyperintensity areas after surgical resection. Unfortunately, it is challenging to distinguish non-enhancing tumors from edema in the non-enhancing T2 hyperintensity areas using conventional MRI alone. Quantitative DCE MRI parameters such as K and V convey permeability information of glioblastomas that cannot be provided by conventional MRI. We used the publicly available nnU-Net to train a deep learning model that incorporated both conventional and DCE MRI to detect the subtle difference in vessel leakiness due to neoangiogenesis between the non-recurrence area and the local recurrence area, which contains a higher proportion of high-grade glioma cells. We found that the addition of V doubled the sensitivity while nonsignificantly decreasing the specificity for prediction of local recurrence in glioblastomas, which implies that the combined model may result in fewer missed cases of local recurrence. The deep learning model predictive of local recurrence may enable risk-adapted radiotherapy planning in patients with grade 4 adult-type diffuse gliomas.

摘要

4级成人型弥漫性胶质瘤患者的局部复发大多发生在手术切除后残留的非强化T2高信号区域内。不幸的是,仅使用传统MRI很难在非强化T2高信号区域中将非强化肿瘤与水肿区分开来。定量动态对比增强MRI参数(如K和V)传达了胶质母细胞瘤的通透性信息,而传统MRI无法提供这些信息。我们使用公开可用的nnU-Net训练了一个深度学习模型,该模型结合了传统MRI和动态对比增强MRI,以检测非复发区域和局部复发区域(其中高级别胶质瘤细胞比例更高)之间由于新生血管形成导致的血管渗漏细微差异。我们发现,添加V可使胶质母细胞瘤局部复发预测的敏感性提高一倍,而特异性降低不显著,这意味着联合模型可能会减少局部复发的漏诊病例。预测局部复发的深度学习模型可能有助于为4级成人型弥漫性胶质瘤患者制定风险适应性放疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da2d/10810891/74ba76946282/41598_2024_52841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验